5. THE TODD-COXETER
ALGORITHM

85.1. Presentations

Presenting a group by generators and relations is by
far the most compact way of describing a group and it is
often the way it arises in applications. So we need some
way of unravelling the structure of the group from its
presentation. The Todd-Coxeter Algorithm aims to do
just that.

If " is a set of symbols, a group word on I is a
string of elements of I" and their inverses. The inverse of
a symbol X is just the formal expression X1, treated as a
single symbol. For convenience in our calculations we
will use lower case letters to denote inverses. So, for
example, we use the letter a to represent A,

Example 1. The group word AAbABaaa represents
A’BTABA-S. If A% =1, the group words AAAAA, A and
aaa all represent the same element.

In the following description of the algorithm we
sometimes use a capital letter, such as X, to represent
either a generator or the inverse of a generator. In that case
the corresponding lower case letter represents its inverse.
So if X is actually the inverse of a generator, x would be
the corresponding generator itself.

213



A presentation of a group is a description (I" | R)
where I' is a set of generators and R a set of group words,
called relators. Every element of the group is represented
by a group word on I'. Two group words represent the
same element if the equality is a consequence of the
relations in R. (In chapter 9 we’ll define (I" | R) more
precisely as a quotient group of a free group.) Sometimes
we write a relator UV or UV as the relation U = V.

A free group is one with no relations, that is, G is
free if G = (I" | ) for some I'. A free group on a single
generator is the infinite cyclic group.

A group G is finitely generated if it has a
presentation (I" | R) where T" is finite and it is finitely
presented if it has a presentation (I" | R) where both I" and
R are finite. In this chapter we only consider finitely
presented groups.

Example 2: (A, B | A% B? BA = AB) is a finitely
presented group.

We will write this as (A, B | A% B?, BA = aB).

We can also write this as (A, B | A% B2, ABAB) because
we can deduce the relation (AB)? =1 from A*=1,B?=1
and BA = A~!B and conversely we can deduce BA=A"B
from the relations A*=1, B>=1 and (AB)? = 1.

An equivalent presentation of this group is

(A, B| A% B2, BAB =AY
which we shall write as (A, B | A%, B2, bAB = a).
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The elements of this group are products of powers
of A’s and B’s. Since BA = A™'B we can bring all the A’s
to the front and so every element can be put in the form
A'Bs.

Since A* =1 and B? = 1 we can assume that r = 0,
1,2 o0r3ands=0or 1. The group thus has 8 elements: 1,
A, A%, A3 B, AB, A?B, A°B. It is the dihedral group of
order 8.

You may feel that you were able to predict that this
group has order 8 from the relators A* and B? (since 4 x 2
= 8). But it’s not always so simple. For example the
following group may appear to have order 4 but in fact it
Is infinite.

Example 3: (A, B | A?, B?) is infinite.
The elements are strings of alternating A’s and B’s (any
successive pair of A’s or of B’s can be removed) so the
distinct elements are:

1, A, AB, ABA, ABAB, ..., B, BA, BAB, BABA, .....
For example the product of BAB and BABABA is

BABBABABA = ABA.

The inverse of BABA is ABAB and the inverse of ABA
is ABA itself.

Any string that starts and finishes with the same
symbol has infinite order while if the first symbol is
different to the last the string has order 2.

So C = AB has infinite order as has C' = BtA™ =
BA. The group can be generated by A and C (since B =
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AC) and since BC = BAB = C'B we can present the
group as (C, B | B2, BC = CB). Rewriting C as A this
becomes (A, B | B2,BA = A'B) which we recognise as
belonging to the dihedral family. We call it the infinite
dihedral group and denote it by D-.

On the other hand the group in the next example is
much smaller than it might appear.

Example 4: (A, B | A%, B®, BA = A2B) has order 3. This
is because BAB™ = A% so
B2AB2=B (BAB)B!

= BA?B™

= (BAB™)?

- (A2)2

=A%,
Continuing we get B3AB=3 = A8 = A3,
Since B® =1 it follows that A = A% and hence A? = 1.
But A% =1s0 A = 1. So this is simply the cyclic group of
order 3 in disguise.
A simpler presentation would be (B | B®) or, since we
could use any letter for the generator, (A | A3).

85.2. Chains and Links

Suppose we have a finite presentation (I" | R) for a group
G. An element of G will be represented by many group
words. We attempt to assign to each element a unique
integer code, with 1 representing the identity and 2, 3, ...,
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N representing the other elements. If we succeed, the
order of the group is N. Of course this will only happen if
G is finite.

A chain is an expression mWn, representing the
equation mW =n, where m and n are integer codes and
W is a group word. ‘

The length of a chain mWn is the length
of the word W (that is, the number of symbols,
counting each generator or its inverse as a
single symbol).

Example 5: 7AAbbb2 is a chain of length 5
representing 7 x A’2B=2 = 2. Here 2, 7 and
A?B~3 are all elements of the group. The
elements represented by the integer codes 2
and 7 will also be expressible as group words
and the group word A2B~2 will also have an
integer code.

At the outset the elements of the
group being presented will be
expressed as words in the generators
but, since many different words can
represent the same element, this is
not a satisfactory  notation.
Gradually, as the algorithm progresses, we assign a
unique integer code to each element.

A chain mWhn is a link if it has length 1, that is,
where the word W is a generator or the inverse of a
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generator. Once we know all the links we can express the
codes in terms of the generators and hence obtain the
group table.

Example 6: If B is one of the generators then the chain
6B2 isalink. It provides the information that 6B = 2. For
example, if we have already expressed 6 as the word
BA3B~2 then we can express 2 as BA’B™.

The links are used to build up a table, called the
Link Table:

A B

Once we have completed this table we can produce the
group table.

Example 7: If we have a group generated by A and B
with the following link table, the group has order 6.
A B

OOk WN PR
Ol (O, |WN
WIN (kOO
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We can use the link table to express each element as a
group word. For example, since 1 is the identity it follows
that the element 2 is A and the element 4 is B. In the next
row we have the fact that 2A = 3 s0 3 = AA = A%, Doing
this for all the elements we get:

A B
1] 2 4 1
2| 3 5 A
3| 1 6 2A
41 6 1 B
5| 4 2 2B
6| 5 3 3B

The group word associated with each is, of course, not
unique. We can now complete the group table.
For example, 5.3 =5.2A =5AA=4A =6 and
6.5=6.2B =6AB=5B =2,

If G is a generator then the links rGs and sgr, where
g = G, give equivalent information. This is because rGs
represents the equation rG = s while sgr represents the
equivalent equation sGt =r.
We call these links conjugates of one another.

Example 8: The conjugate of the link 3B5 is the link 5b3.

§ 5.3. Restricted Todd-Coxeter Algorithm

To make it easy to follow the algorithm I’11 use a
mixture of metaphors. So far I’ve used the rather
mechanical metaphor of ‘chains’ and ‘links’ to describe
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the ingredients of the algorithm, but to describe the
overall behaviour I’ll use the metaphor of population
dynamics.

A chain is said to die when it contracts down to a
link. Throughout the course of the algorithm chains are
born, contract and eventually die and the success of the
algorithm for a particular presentation depends on the
balance between the birth and death rates. The birth rate
is uniform (with as many new chains born in each
generation as there are relators) but the death rate can be
unpredictable. At first the set of live chains grows, with
more being born than die. If all goes well the time comes
when the balance shifts and the population decreases and
is finally wiped out. But it can happen that the population
grows indefinitely and in this case the algorithm will fail
to terminate.

The algorithm proceeds in a cycle with three stages
occurring at each generation:

BIRTH, CONTRACTION and MARRIAGE.
We begin with BIRTH.

BIRTH RULE
Having just created the integer code m we add the
chain mRm to the list of chains for each relator R.

Suppose we are processing the presentation
(A,B, ...|R,S, ..).
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Then the relators R, S, ...
represent the identity. So for
every integer code m. the
chains mRm, mSm, ... are
valid because they simply
state that m1 = m. At each
generation, after
introducing a new integer code, these corresponding
chains are born, one for each relator.

This is how the algorithm gets off the ground
because we begin with the code 1, representing the
identity and so the first chains to be born are:

1R1, 181, ....

Example 9: For (A, B| A% B?, BA=A"B)=(A, B| A%,
B2, ABAD) the process begins with the birth of the chains:
1AAAAL, 1BB1, 1ABAD1.

Next we carry out any contractions that are
possible.

CONTRACTION RULE
If X is a generator (or the inverse of a generator) and
rXs is a link we may contract rX to s at the start of
any live chain and contract X's to r at the end of any
live chain:
rX—>s, Xs—or
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After the first generation of chains are born there
are no links and so no

v contraction is possible.
W One way to obtain links
_ 4 is for chains to contract
*.’r),. ~= to a link, but clearly that

cannot occur until we

have some links already.

Fortunately there’s
another way of obtaining links, through so-called
‘marriage’.

The link rXs represents the equation rX =s, so
clearly rX can be replaced by s. If «Xs is any live chain,
ending in Xsthens=oaX =rX,soa =r. Hence a ris a
valid chain (representing o =r).

Example 10: If 3A5 is a link (equivalent to the conjugate
link 5a3) we may perform the following contractions:
3ABBB3 — 5BBB3,
5aBBAbA2 — 3BBAbA2,
2ABAAS5 — 2ABA3,
2ABa3 — 2ABS.

If 5B4, 2B3 are also links we may make the following

further contractions of 5BBB3:
5BBB3 — 4BB3 — 4B2.
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This chain has now contracted down to a link and so, as a
chain, it dies. But it may well be a new link, enabling
further contractions.

DEATH RULE
Whenever a chain contracts to a link it ‘dies’.
The information it conveys is transferred to the link
table.

If the new link has the form rGs,
where G is a generator, or the
inverse of a generator, we write
s in row r, column G of the link
table. Then we can write the
corresponding information for
the equivalent link sgr.

When the dust finally
settles, and we still have some
live chains, but no more contractions are possible, we
must create a new integer code.

MARRIAGE RULE
If the set of live chains is non-empty, and no further
contractions are possible, assign the next available
code, m, by creating a new link of the form mGr or
rGm where G is a generator or the inverse of a
generator for some r <m.
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The creation of the new link can be thought of as a
‘marriage’ where the new code ‘marries’ one of the
existing ones. Like marriage in western society there is
freedom to choose a partner — the algorithm doesn’t
arrange the marriage. But, as with real marriages there are
sensible choices and less sensible ones, so it is with the
Todd-Coxeter Algorithm. At the time of a marriage it is
impossible to know for certain that a given choice is going
to be successful!

Unlike human marriage the choice goes beyond
that of choosing a partner — the choice of generator comes
into it too. And different codes
can ‘marry’ the same code, using
different generators. Perhaps the
analogy is starting to break
down, so let me explain in a
more mundane fashion how this
so-called ‘marriage rule’
operates.

The rule defines the next integer code in terms of
the preceding ones. Having done that, a whole new
generation of chains is ready to be born. Further
possibilities for contraction now arise. There is now a
whole new generation of chains to process, but more
importantly the new link can be used in further
contractions.

Example 11: Suppose we have assigned codes 1, 2, 3 and
have generated all the corresponding chains and
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contracted them as far as possible. At that stage we need
to define a new integer code by creating a link to define
4. For example we might create the link 4A2. This means
putting 4A = 2 or, in other words, defining 4 as 2A~L. Or
we could create 3B4, which defines 4 as 3B.

Note that we are not allowed to create a link of the
form mAm, defining m in terms of itself. Nor can we
define m in terms of a future code. If only codes 1, 2, 3
have been assigned then the code 4 can’t be defined by a
link such as 4B7. In defining a new code m the other code
must be less than m.

One very good strategy is to create the new link so
as to fill up the next available blank in the Link Table.
This could be considered the default strategy and it is the
one that is mostly used in the following examples.
However the unsolvability of the word problem means
that there is no strategy that can be guaranteed to always
work. So, there will be times when this default strategy
will be the wrong thing to do.

Example 12:

Suppose we have assigned codes 1, 2, 3 and we
need to assign the code 4 at the stage where our table of
links so far is:

A B
11 2 3
21 1
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We may decide to create the link 2B4 or 3A4 or 3B4. The
default strategy would be to create the link 2B4.

But another consideration is how useful the newly
created link would be at the moment. If, in the above
situation, we had the chain 3BA3 we might decide to
create the link 3B4 because this could be used
immediately to contract 3BA3 to 4A3 thereby giving yet
another link.

Finally we must ask, “How does the algorithm
begin and how does it terminate?” It begins with the
empty set of chains and with the integer code 1 being
created, representing the identity. This immediately
causes a number of chains to be born, and the process of
birth, contraction and death to take place.

STARTING
Begin with an empty set of chains and
assign the code 1.

The restricted algorithm that we are describing
terminates in one of two ways. For a start there is the
possibility that a chain contracts to a link which conflicts
with one that we already have. That is, when we come to
enter the new link in the link table we find that this cell is
already occupied with a different code. Or we may find
that a code is repeated in a row.

For example if we have the two links 5B7 and 5B9
then 5B = 7 and 5B = 9, meaning that we have
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inadvertently issued two different codes for the same
element. This is called a contradiction. It could mean that
you’ve made a mistake, but it can also arise with no error
being made.

The complete axiom arranges for the two codes to
be identified, so that the larger code is replaced by the
smaller one in all chains and links. Then the usual process
continues. We will only consider the Restricted
algorithm, whereby we abort if we reach a contradiction.
Of course, you should check your working if a
contradiction arises. But if the contradiction is really there
the only thing only thing to do is start again with different
choices, or perhaps rewrite the presentation and start
again. In everything that follows, when we refer to the
Todd-Coxeter Algorithm we will mean the restricted one.

It is also possible that we have two links with the
same codes but different generators. For example you
may find that you get the two links 5A7 and 5C7. This
would mean that having 5A = 7 and also 5C = 7. This
would mean that A = C. Again this is more likely to be
due to an error. But it can occur by virtue of the fact that
the relators in the presentation might lead to such a
collapse. For example in the presentation

(A, B,C| A% B? (A1C)?, (ATIC)’, BA = A™lB),
the relators (A~1C)? and (A~1C)’ together imply that A~1C
= 1, or A = C. Such a situation can’t be remedied by
making better choices. The problem is intrinsic to the
presentation. If you ever get such a situation you should
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first check your work, and then, if you are convinced you
have made no error, modify the presentation.

But the normal way for the algorithm to terminate,
and the only way that gives us a group table, is to arrive
at a situation where we have a complete Link Table, with
no blanks. Clearly a completed link table will allow all
chains to be contracted to links, so that all chains will die,
but it is not necessary to do this.

FINISHING:
Terminate when either:
(1) All chains have become links and the table of links
is complete or
(2) You get a contradiction in the Link Table (an
abortion).

If the algorithm terminates under (1) it will have
been successful and we will have a group table. If it
terminates under (2) the algorithm fails. This will either
mean that we could have made better choices (we could
begin again and vary our strategy). A further possibility
is that we never reach either state (1) or (2) and the
algorithm fails to terminate. This will occur if the group
is infinite.

With the Unrestricted Algorithm, where
identifications are used to deal with contradictions, it is
the case that if the group is finite there will definitely be
a sequence of choices that will lead to the algorithm
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terminating successfully. The problem is that there is no
strategy that can be guaranteed to achieve this.

THE (RESTRICTED) TODD-COXETER
ALGORITHM

Suppose ( Gi, G2, ... , Gm | R, Ry, ... , R ) is a
presentation for a group G.
(1) Initially let N = 1, C = the empty set of chains, and
L a table with 2m columns with each cell blank. The
number of rows is initially 1. The 2m columns are
labelled by the generators and their inverses.
(2) For each relator R; adjoin the chain NRiN to C;
(3) Where possible, contract chains using the links in
L. Any chain that contracts to a link is transferred to
the link table and the chain dies. It’s removed from the
chain table, C.
(4) If this results in two integers being assigned to the
same cell in the Link Table, abort the algorithm.
(5) When no further contraction is possible, and L has
a blank cell, increase N by 1. Then marry N to one of
the existing codes by inserting a new link into the Link
Table. Then GO TO (2).
(6) If L has no blank cell terminate.
Then the group has order N and the group table can
be constructed from the information given by the links
inL.

In performing the Todd-Coxeter Algorithm by
hand we set out our working in three tables:
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CHAIN TABLE: This describes the successive
contractions of the chains. Each of the chains that are born
is placed at the start of a new row and their successive
contractions are recorded.

LINK TABLE: Once a proper chain becomes a link the
information is transferred to the link table. At the right of
the table record the link definitions for each code. The
code ‘1’ is assigned to the identity so we write 1 in the
definition column of the table for the code 1°.

A B

If the relators involve inverse it is useful to have extra
columns for inverses of generators. For example, if we
have the relator CBC*A, which we would write as CBcA,
we should have a column for c. Whenever we have a link
mCn we should enter n in the mC position of the Link
Table and m in the nc position. This is because mCn and
the conjugate ncm, carry the same information since mCn
means mC = n and ncm means nC™* = m.

Suppose we have just created, or discovered, the
link 2C3. Then we enter it, and the conjugate link 3c2 into
the Link Table as follows:
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A B C Cc
1 1
2 3
3 2
But don’t bother with these inverse columns if there are
no inverses in the relators.

GROUP TABLE: This is the ‘multiplication’ table for
the group.

1 2
11 1 2
21 2

§ 5.4. Examples

Perhaps you find all this very confusing. That’s not
surprising, because this is probably the most complex
algorithm you’ll ever have to carry out. Also, what you
might find disquieting, is that the algorithm is not
deterministic. At one stage in every generation you have
to make a ‘marriage’ choice and the success depends on
whether you make the ‘right’ one. | can give advice that
can help, but the unsolvability of the word problem
guarantees that no choice strategy exists that would
always be successful.

Having said this, it is remarkable how often even
the restricted algorithm works, provided we start with a
‘good’ presentation and use the couple of simple
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strategies that | describe. Work through the following
examples and you’ll eventually find that it becomes
second nature.

Example 13: G =(A, B| A?, B?, (AB)?).
(For clarity I’11 describe the appearance of the tables at
each generation and make bold the additional information
at each stage. Normally you would carry out your working
in the one set of tables.)

We begin with N = 1. For each relator a chain is
born.

1AA1 A B

1BB1 1 [ 1

1ABAB1

Having no links we clearly can’t make any contraction
so we must create a link to define 2 (the marriage step).
Using the default strategy we create the link 1A2,
thereby defining 2 = A. We write 2 in the ‘1’row and A
column. We enclose it in parentheses to record the fact
that this link was created, rather than found as a result of
contracting a chain. This makes it easier to follow the
sequence of events when the table is completed.

1AAL A B
1BB1 1] (2)
1ABAB1 2 A

-

232



Having defined a new code, a new generation of chains
Is born, one for each relator.

1AAL A B
1BB1 1[(2)
1ABABL 2 A
2AA2
2BB2
2ABAB2

e

Some contraction is now possible. Any ‘1A’ can be
replaced by 2’ and any ‘A2’ can be replaced by ‘1°. We
use an arrow to separate a chain from its contraction.

1AAL—>2A1 A B
1BB1 1[(2)
1ABAB1—>2BAB1 2 A
2AA2—2A1
2BB2
2ABAB2

e

Three chains have contracted, and two of them have
contracted down to the same link 2A1. This is a new link
and so is transferred to the link table. Those two chains
are considered ‘dead’ and don’t enter into the remaining
computation so we mark them by the symbol “x’.
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1AAL>2A1 x A B
1BB1 1[(2) 1
1ABAB1>2BAB1 2( 1 A
2AA2—>2A1 =

2BB2

2ABAB2

The new link 2A1 has been obtained twice. The first
time it gets recorded as ‘x’ but the second time it gets
‘=", indicating that the link is repeating one we already
have. In general, any chain that becomes equal to one
that we have elsewhere in the Chain Table get’s killed
immediately and is recorded as ‘=’.

The new link means that chains starting with ‘2A’ or
ending with ‘A1’ can be contracted. This allows just one
more contraction: 2ABAB2 — 1BAB?2.

1AAL>2A1 x A B
1BB1 1[(2) 1
1ABAB1 >2BAB1 2( 1 A
2AA2— 2A1 =

2BB2

2ABAB2—1BAB?

No further contraction is possible so we must create a
new code. The default strategy would create 1B3. This
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seems to be a good idea because it will be useful in
contracting the two chains that begin with ‘1B’.

1AA1-2A1 X A B
1BB1—>3B1 X 1{(2)](3)
1ABAB1-52BAB1 1
2AA2—2A1 X 3
2BB2

2ABAB2—-1BAB2—»>3AB2
3AA3

3BB3—»3B1 =
SABAB3—53ABAl

N

w >+

We have now (twice) obtained the link 3B1. We enter
this up in the link table. This link allows some further
contraction.

1AA1>2A1 A B
1BB1—3B1 X 1120
1ABAB1->2BAB1->2BA3 1
2AA2—32A1 x 3 1
2BB2

2ABAB2—1BAB2—3AB2
3AA3

3BB3—3B1 =
3ABAB3—3ABA1->3AB2

X

N

w >+

No further contraction is possible so we create code ‘4°.
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1AA1—->2A1 X A B
1BB1—3B1 (2) | (3
1ABAB1—»>2BAB1—->2BA3 1 |(4)
2AA2—2A1 =
2BB2
2ABAB2—->1BAB2—3AB2
3AA3
3BB3—3B1 =
3ABAB3—»3ABA1—->3AB2
4AA4
4BB4
4ABAB4
Many contractions are now possible, leading to further
links, leading to further contractions until all chains
become links and the link table becomes complete.

1AA1—>2A1 X
1BB1—-3B1
1ABAB1-52BAB1->2BA3—>4A3
2AA2—2A1

2BB2—4B2
2ABAB2—1BAB2—>3AB2—>4B2
3AA3—>3A4

3BB3—3B1
3ABAB3—->3ABA1—»>3AB2
4AA4—>3A4

4BB4—2B4 =
4ABAB4—3BAB4—>1AB4—52B4 | =

O DN
=

I X X

I X

X
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A B

1 @ ]@®]1
2l 1 [ @ ]A
3 4 | 1B
4] 3 | 2 |2B

We can now complete the group table. The first row and
column are easy, since ‘1’ is the identity.

2 3 4
2134

1
1
2
3

wnN -

414
Now 2 = A so the ‘2’ column in the group table is a copy
of the A column in the Link Table. Similarly, as 3 = B,
the 3’ column in the group table is a copy of the B column
in the Link Table.

R

wWwnN -
WIN[F|F-
AN
Rl Wlw

41413|2
Finally, since 4 = 2B we use the B column of the Link
Table to transform the ‘2’ column of the group table into
the ‘4’ column. For example, 3.4 = 3(2B) = (3.2)B = 4B
(from the 2 column of the group table) = 3 (from the B
column of the link table).
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The entries in the ‘2’ columnare 2,1, 4, 3
respectively and from the link table 2B =4, 1B = 3, 4B
=2 and 3B = 1. So the ‘4’ column of the group table is
4, 3, 2, 1 respectively.

WIN|F|F-
AN
R wlw

B W DN
RN W(b(D>

4132

Example 14: G = (A, B | A% B2 BAB =A%)

We write the third relator as BABA. We show the state of
the computation at each generation and, to save space, we
omit any rows that contain ‘dead’ chains from the
previous step.

N=1,2
1AAA1-2AAl A B
1BBl1—> 11(2)
1BABAl 2 A
2AAA2—2AAlL =
2BB2
2BABA2—2BAB1

|

The symbol ‘=" indicates that the chain is a repetition of
an earlier one. There is no need to process this further and
we can effectively regard it as ‘dead’.

238



N=3

1AAA1->2AAl
1BB1—-3B1
1BABA1—->3ABAl

2BB2
2BABA2—»>2BAB1->2BA3
3AAA3

3BB3—1B3

3BABA3—>1ABA3—>2BA3 | =

N=4
1AAA1-52AA1—>4A1
1BABA1->3ABAl

2BB2
2BABA2—»2BAB1->2BA3
3AAA3
4AAAAL4—->1AAL4—2A4
4BB4

4BABA4—4BAB?2

N=5

N

A WDN B

A B

2) ()

A B

) [ ()

(4)

o >+

@ >k

1BABA1-53ABAl

2BB2—5B2

(2)

3)

2BABA2—»2BAB1->2BA3—5A3

(4)

()

3AAA3—->3AAS

4BB4

-

4BABA4—4BAB2—4BAS5

OB IWIN|F-

SAAAS—3AAS
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5BB5—2B5 X

SBABA5—-2ABA5—4BA5

N=6
1BABA1-5>3ABA1—>6BA1—-4Al
SAAA3—3AAS5—>6A5
4BB4—5B4
4BABA4—-4BAB2—->4BA5—4B6
SAAA5—-3AA5—-6A5
SBABA5—2ABA5—->4BA5—6A5
6AAA6—>5AA6—3A6
6BB6—4B6
6BABA6—>4ABA6—1BA6—3A6

X X X X X X X X X

A B
2) 3|1
415 A
6| 1B
1] 6
3| 2 |28
5 | 4

OOk WN P

The first column of the group table is easy, and since
2 = A and 3 = B the next two columns can be copied from
the link table.

Now 4 = 2A so we take the ‘2’ column and multiply each
entry by A, using the Link Table. So 2, 4, 6, 1, 3, 5
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becomes 4, 1, 5, 2, 6, 3. The A column is a permutation
of {1, 2, 3, 4, 5, 6} and we are simply using A to permute
the ‘2° column
GROUP TABLE
4 5 6
4

R
1
1
2
3
4
5
6

Ol WN P
QWL ININ
AN |OTWW
WO (N |01

Since 5 = 2B we permute the ‘2’ column of the group table
by the B column of the Link Table, considered as a
permutation. This gives us the ‘5’ column. Similarly 6 =
3A so we permute the ‘3’ column by A.

GROUP TABLE

123456
111[2|3|4|5]|6
212|4(5]1]6]3
313|/6[1]|5]4]|2
41411[6[2]|3]|5
5|15(3]2]|6]1]4
616/5[4[3]2]1

We can always complete the last column by writing down
the missing symbol in each row.
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Example 15: G = (A, B | A% B* A?=B? B'AB=A").
We write the third relator as AAbb, and the fourth as
bABA. This time we present the finished computation,
though to help you follow it we enclose in parentheses
those links in the link table that came about by creation,
rather than the contraction of a chain. Also, since our
relators involve the inverse ‘b’ we include a column in the
link table for it. Remember that every link that goes in the
B column will produce an equivalent one in the b column.

CHAIN TABLE
1AAAA1—-2AAAL1->4AAL—-TAL
1BBBB1—-»3BBB1—4BB1—8B1
1AAbbl—2Abbl—2Ab3—4b3
1bABA1—->1bAB7—1bA5—8A5
2AAAA2—2AAAL
2BBBB2—>5BBB2—>5BB6—7B6
2AAbb2—4Abb2—4Ab5—7b5
2bABA2—2bAB1—->6AB1—->6A8
3AAAA3—->3AAA5—-6AA5—8A5
3BBBB3—3BBB1
3AAbb3—3AAb4—6ADb4—8b4
3bABA3—1ABA3—2BA3—5A3
4AAAA4—>4AAA2—AAAL
4BBBB4—4BBB3—4BB1
4AAbb4—7Abb4d—1bb4—8b4
4bABA4—3ABA4—>3AB2—6B2

I X X X X

I X X X X

X X

X X
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SAAAA5—-3AAAS

5BBBB5—5BBB2

5AAbb5—3Abb5—6bb5—6b7

5bABA5—2ABA5—-4BA5—>8A5

6AAAAG6—6AAA3—B6AAS

6BBBB6—2BBB6—5BB6—7B6

6AAbb6—-6AAD2—>6AA5

6bABA6—6bAB3—>6bA1—>7AL

TAAAAT-TIAAAT2AAT—4AT

7/BBBB7—»6BBB7—»2BB7—>5B7

7AAbb7—1Abb7—2bb7—6b7

7bABA7—>5ABA7—>3BAT—>4AT

8AAAA8—->5AAA8—3AA8—->6A8

8BBBB8—1BBB8—3BB8—4B8

8AAbb8—>5Abh8—3bh8—1h8

8bABA8—4ABA8—7BA8—6A8

LINK TABLE
A B b
1[@T@] 81
2@ |G| 6 |A
3[4 ]1]|B
463 2a
537228
6/ 8] 2]7]3A
716 |5 |4A
85|14 |48
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We can obtain the group table from the link table
in the usual way. This group is the quaternion group of
order 8.

G

T
—

~NWk |~ lo|do|jo|o D
w

NN |w oo
m

N[O (WIN|F|F-
N[O, (N|&~| &

Uk |o|w|~N|o | (NN g
HCDN\IOO-PU‘IOOOOCC)

w0, ||
HOIN(N[W[F—|OH|00 |00

oo ~NOoO Ok whNPE

oo
w
(o)}

Example 16: G = (A, B | A3, B?, (AB)?

CHAIN TABLE
1AAA1-52AA1—4A1
1BBB1—»>3BB1—-»7B1
1ABAB1-52BAB1->5AB1—»>5A7
2AAA2—-2AAlL
2BBB2—-»5BB2—>9B2
2ABAB2—-4BAB2—»8AB2—8A9
3SAAA3—->6AA3—10A3
3BBB3—3BB1
4AAAA4—1AAL4—2A4
4BBB4—4BB6—8B6
4ABAB4—-1BAB4—»3AB4

I X X X

X X X

X X
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SAAAS—-TAAS—11AS

5BBB5—»5BB2

SABAB5—-5ABA2—->5AB1

6AAAG6—-6AA3

6BBB6—4BB6

6ABAB6—>6ABA8—10BA8—>12A8

TAAAT—>TAAS

7/BBB7—>1BB7—3B7

/ABAB7—-7ABA3—»>7AB10—11B10

8AAA8—9AA8—12A8

8BBB8—6BB8—4B38

8ABAB8—8ABA4—>8AB2—»9B2

9AAA9—9AA8

9BBB9—2BB9—»5B9

9ABAB9—->9ABA5—-9AB11-512B11

10AAA10—-3AA10—6A10

10BBB10—10BB11—10B12

10ABAB10—»3BAB10—»7AB10

11AAA11-55AA11-7Al1l

11BBB11—-»10BB11

11ABAB11-55BAB11-»9AB11

12AAA12—-8AA12—-9A12

12BBB12—11BB12—10B12

12ABAB12—-8BAB12—-»6AB12—»10B12
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LINK TABLE

A

B

(2)

3)

(4)

()

(6)

()

1

(8)

7

©)

(10)

4

11

1

9

6

(12)

2

3

12

5

10

8

11

GROUP TABLE

6

8

6

8

7

3

11

12

O INO |0 WIN|F-

NIO|IRPR|I~RlOONOCTIW|IW

o

QB WOINO®O(F,|O (NN

10

11

11

SR BloloNojusw(N-k
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12

This group is As.
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8 5.5. Why Does It Work?

At this stage it’s difficult to give a rigorous proof
that the Todd-Coxeter algorithm, when it terminates
normally, gives the correct result because we have not yet
properly defined what a group presentation really is. But
here is an informal proof which will suffice for now.

Suppose we carry out the Todd-Coxeter algorithm
on a presentation for a group G and it terminates
normally. We end up with a finite number of codes, N,
and a link table which expresses each of the generators as
a permutation on {1, 2, ... , N}. These permutations
generate a permutation group which will satisfy all the
relations given in the presentation. Provided that different
codes correspond to different elements this permutation
group will be isomorphic to the group presented by the
presentation.

Now identifications can occur during the course of
the algorithm, forced by contradictions that arise from
interactions between the relations. But if at the end we
have two different codes for the same group element we
would have an unforced identification, that is, one that is
not a consequence of the relations.

But the group described by the presentation is one
in which the only relations that hold are those that are
consequences of the ones given in the presentation. An
unforced identification would correspond to a relation
that is not a consequence of these. It therefore could not
arise. Hence the permutation group obtained at the end is
indeed isomorphic to the group being presented.
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§ 5.6. Compact Todd-Coxeter

There is a lot of rewriting involved as the chains are
born, contract and die. The following is a more compact
way of setting out the working. Consider the following
reworking of Example 13.

Example 13 (compact): G ={(A, B | A? B? (AB)?).
The Chain Table begins as follows.

A A B B A B A B
10 [l frf | 1]

Since we don’t know how big the group is we don’t know
how many rows there will be. But the number of columns
will remain the same. It is determined by the presentation.

The Link Table begins as follows.
A|B

1

Again the number of columns is fixed but we don’t know
until we are finished how many rows there will be.

The next available code is 2 and we decide to assign it to
1A. So we write (2) in the 1A position of the Link Table.
This represents the link 1A2.The reason for the
parentheses is to record the fact that this was a choice. So
the Link Table now becomes as follows.
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A |B
11(2)
Going back to the Chain Table we write 2 where there is

a ‘1’ in a 4 column and an A above. This corresponds to
the use of the link 1A2, where 1A = 2.

A A B B A B A B
|

(12 1] 1] 2] 1]
At the same time we create a second row.

A A B B A B A B

1 2 1 1 2 1
2 2 2 2

We now have the link 2A1 in the top row. We
transfer this to the Link Table, which becomes:

A|B
1((2)

2| 1
This time we don’t enclose the ‘1’ in parentheses because
we didn’t choose that link. It was a consequence of the
previous choice.

Now we can use that link to further process the
Chain Table.
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1| 2 1 1 2 1
2 | 1 2 2 1 2

No further contractions are possible so we
introduce a 3" row.

A A B B A B A B

1| 2 1 1 2 1
2 | 1 2 2 1 2
3 3 3 3

Let’s choose 1B3. This is entered into the Link Table.

AlB
11(2)|B)
2] 1

3

We can use this new link 1B3 to process the Chain
Table further.

A A B B A B A B

1] 2 1 3 1 2 1
2 |1 2 2 1 3 2
3 3 3 3

This now gives a new link 3B1. The Link Table
becomes:
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|

2) | (3)

N
[EEN

Back to the Chain Table.

1| 2 1 13 ] 1 2 3 11
2 |1 2 2 1 3 2
3 3 1|3 2 1] 3

We were able to put the 3B1 at the end of the top
row and the 2A1 in the bottom row, but that’s as far as we
can go at this stage as we don’t know 2B? ?A3 3A?
or ?7B2. Looks like we’ll have to create a ‘4’

AlB
2) | (3)
1 (4
1

AIWNF

N> Ww

NI B> W

Nlw (N[
R E TR
NlwN|F
Nlw N[
NN
N w |~
Nlw N[
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We can now com

lete the Link Table:

A

B

)

2)
1

WIN |-

4

(4)
1

4

3

2

The Group Table can be obtained as before.

Example 15 (compact):
G =(A,B| A% B* A2=B? BAB = A™).

Rather than writing out the Chain Table and Link
table at each stage I’ll just write out the final tables when
the algorithm terminates.

AAAABBBBAADbBbDbBbABA
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2lal7]1(2|5]7]6|2]4a]7]5/2]6]8]1]2
3|6(8|5/3]4(8|1]|3]6/8/4]3[1|2]5]3
4|711]2]al8|1|3]4]7]1]8]4|3|6]2]4
5/3]6/8(5(7|6/2]/5]3]6|7|5|2/4]8]5
6/8/5(3|6/2/5|7|6/8|5/2|6]/7]|1]3]6
7112]4l716]2]5|7]1]2]6|7]5]|3]4|7
8|5(3|6/8|1(3/4|8|5|3/1]8(4|7]6]8
AlB b A[B|b
1]@) s8] ]5]3]7]2
2@ ) [6] |6]8]2]7
3@ 4 1] |7]1]6]6
4@ 3] [8|5]1]4




8§ 5.7. Marriage Strategies

Probably all of the algorithms you have met so far
in your mathematical career are deterministic. This means
that the algorithm tells you precisely what to do at each
stage and terminates after a finite number of steps. It can
therefore be programmed on a computer so that, after
feeding in the input data, we simply need to click “GO”
and wait for the output.

By contrast the Todd-Coxeter algorithm is a wild
beast. It is non-deterministic. Every so often the algorithm
consults you as an external ‘oracle’. “I can’t proceed”, it
says, “please choose a marriage partner for the next
code”. This you do and then it goes off happily for a while
until it has to come back for some more advice.

The following three strategies are useful.

MARRIAGE STRATEGY |
Fill up the first blank cell in the Link Table.

For example if our Link Table, at a given stage, is:

A B
120
2| 3
3

and we are about to create the code ‘4’ we would,
following this strategy, create the link 2B4 by writing (4)
into the table. Our Link Table would now be:
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A B

113203
2073 [(a)
3

MARRIAGE STRATEGY II
Choose a link that shortens one of the shortest
chains.

For example if we have the chains 1AAAAS,
2ABA3, 1AABB2, and we are about to create the code ‘5’
we would, using this principle, create the link 2A5, or
perhaps 5A3. Either way we would now have a chain of
length 2 (either 5BA3 or 2AB5, depending which of the
alternatives we chose. Short chains are more likely to give
links in the near future and links allow us to shorten other
chains, so this seems a sensible strategy.

MARRIAGE STRATEGY 111
Choose a link that will shorten the most chains.

For example if we have the chains 1AAAAS,
2ABA3, 1AABB2 and we are about to create the code ‘5’
we would, using this principle, create the link 1A5 to
shorten the first and third chains, or perhaps 5A3 to
shorten the first and second.

In many cases there will be equally attractive
alternatives. We can often choose between them by
considering which best satisfies the other strategies. For
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example using strategy 111 above we could have created
the link 1A5 or 5A3 but since 5A3 also shortens the
shortest chain that is the one we should probably choose.
There are many other, less obvious strategies. In fact no
finite list of strategies will work in all cases.

§ 5.8. Unsolvability of the Word Problem

Which of the above marriage strategies is the best?
If we could decide that then we could then build this into
the algorithm and so make it deterministic. Unfortunately
it is not possible!

The Todd-Coxeter Algorithm (either the restricted
or the full version) will, if it terminates normally, give the
correct group table and the full wversion, involving
identifications to resolve contradictions, will only ever
terminate normally — if it terminates at all. The intrinsic
problem with the Todd-Coxeter Algorithm is that it may
never terminate.

Of course, if the presentation is that of an infinite
group then quite clearly it can never terminate. We would
be forced to keep giving out more and more integer codes.

But what if the group is indeed finite? If the
algorithm doesn’t terminate there is no way of knowing
this. Even if the algorithm continues for an enormous
length of time, with integer codes running in to the
millions, we cannot be sure that it is destined to go on
forever. We may be just about to conclude that we have
an infinite group when suddenly all the chains collapse
and the algorithm terminates. It might just be a very, very
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large group, but not an infinite one. Or we could get
contradictions and identifications and it might turn out
that all the millions of codes represent the same element
and we have the trivial group! We can never tell what’s
around the corner.

On the other hand, even though we have a finite
group, because of the choices that we make, the algorithm
may go on indefinitely. Certainly it’s very easy to make
poor choices that would cause this to happen.

What if the group really is finite and we make the
‘right’ choices? Then it is true that the full algorithm will
terminate, giving the correct group table. But how can we
know what are the right choices? Is there is a strategy,
either a combination of the three given above, or perhaps
some other fiendishly clever one, that would guarantee
that the full algorithm would always terminate? The
answer is a resounding ‘NO’. In fact we can’t guarantee
that, given a presentation, we can always determine
whether a given word will reduce to the identity!

It is not simply that
nobody has yet come up
with such a deterministic
algorithm. It has been
proved that nobody ever
will!  Like the Halting
Problem in  computer
science, the Word Problem
IS unsolvable.
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THE WORD PROBLEM

Construct an algorithm which, given any presentation
for a group, and any word in those generators, will
determine whether or not that word represents the
identity.

Theorem 1: The Word Problem is Unsolvable (i.e. no
such algorithm can ever exist).

‘Proof’: This has been proved but, as the proof is rather
long and technical, | omit it. Basically one assumes that
such an algorithm exists and then proceeds to obtain a
logical contradiction.

What it means is that the Todd-Coxeter algorithm
attempts to do something that is intrinsically impossible.
Yet it works surprisingly well, for ‘reasonable’
presentations, using ‘sensible’ choice strategies (like the
three given above). Needless to say, much research has
gone into investigating the effect of different choice
strategies for different types of presentation.

Can we avoid identifications by making the ‘right’
choices? This is easily answered. We cannot. For example
the presentation (A|A® A7) represents the trivial group
{1}. This is because A = AP = (A)}(A")2=1. Yet we
have to begin by introducing the integer code ‘2°, which
ultimately must be identified with “1°.

In many other cases, however, when a
contradiction arises, it is possible to avoid identifications
by starting again and making better choices.
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Example 17: G = (A, B| A7, A’B?).

If we adopted strategy | at each step we would find that
we get a contradiction after having introduced code 21. If
you want to recreate this computation the created links
would be:

1A2, 1B3, 2A4, 2B5, 3A6, 3B7, 4A8, 4B9, 5A10, 5B11,
6B12, 7B13, 8A14, 8B15, 9A16, 10B17, 11B18, 12A19,
12B20, 14B21.

If we adopted strategy Il at each stage we’d find that we
would get a contradiction after having introduced code
20. The created links would be:

1A2, 2A3, 3B4, 3A5,5B6, 4A7, 7A8,5A9, 6A10, 10A11,
8A12, 9A13, 12Al14, 12B15, 13Al6, 1B17, 2B18,
11A19, 14A20.

If we adopted strategy |11 at each stage we would find that
we would get a contradiction after having introduced code
17. The created links would be:

1A2, 2A3, 3A4, 4A5, 5A6, 6A7, 1B8, 1h9, 3b10, 5b11,
7b12, 2b13, 4b14, 9al5, 10a16, 10A17.

But the following combination of all three basic strategies
terminates without recourse to identifications.

We begin by using strategy |1l at each stage.
1AAAAAAAL—-2AAAAAAL—->3AAAAAL X
—>4AAAAL->5AAAL—>6AALTAL
1AABB1—~>2ABB1—»>3BB1
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2AAAAAAA2—-3AAAAAA2—-3AAAAAL =
2AABB2—»3ABB2—4BB2
3AAAAAAA3—->3AAAAAA2—-3AAAAAL =
3AABB3—4ABB3—5BB3
AAAAAAAAL—-IAAAAAA3S—LAAAAAAZ =
—>4AAAAL
4AABB4—-5ABB4—6BB4
SAAAAAAAS—->5AAAAAAL—-S5AAAAAS =
—>5AAAA2—->5AAAL
5AABB5—-6ABB5—7BB5
6AAAAAAAG—->6AAAAAAS—HBAAAAAL =
—6AAAA3->6AAAZ2—6AAL
6AABB6—7ABB6—1BB6
TAAAAAAAT—-IAAAAAAT—2AAAAAT =
—>3AAAAT>4AAAT>5AAT—6AT

7AABB7—>1ABB7—>2BB7
A B
1[ @) 1
2 (3) 1A
3] (4 2A
4] (5) 3A
5| (6) 4A
6| (7) 5A
701 6A

We have lots of lovely short chains of the form
xBBy but without a B link we’ll have no chance of
making links from them. For this reason we now switch

259



to strategy | and fill up the first blank in the B column by
creating the link 1B8.

3BB1
4BB2
5BB3
6BB4
7BB5
1BB6—>8B6 x
2BB7
SAAAAAAAS
8AABBS
A B

1@ [@)]1

21 (3) 1A

3 (4) 2

4| (5) 3A

5[ (6) 4A

6| (7) 5A

701 6A

8 6 | 1B

It would be very natural now to concentrate on Bs
but it turns out that this is not a good idea. Instead we go
back to strategy Ill. It might seem a bad idea to be again
filling up the A column and neglecting the B column, but
watch!
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3BB1

4BB2

5BB3

6BB4

/BB5

2BB7

8AAAAAAAB—IAAAAAAB—I0AAAAAS
—11AAAA8—-12AAA8—->13AAS8

8AABB8—8AAB1->9AB1—-10B1

9AAAAAAA9I—->IAAAAAAB—I0AAAAAS

9AABB9—10ABB9—11BB9

10AAAAAAA10—-10AAAAAA9—10AAAAAS

10AABB10—11ABB10—12BB10

11AAAAAAAL11—-11AAAAAAL0—-11IAAAAAI
—11AAAA8

11AABB11-5>12ABB11-13BB11

12AAAAAAAL12—-12AAAAAALIL—-12AAAAALD
—12AAAA9—-12AAA8

12AABB12—13ABB12

13AAAAAAAL13—13AAAAAAL2—-13AAAAALL
—13AAAA10—-13AAA9—13AA8

13AABB13
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A B

1@ [®]1

2| (3) 1A
3| ) 2A
4| (5) 3A
5| () 4A
6| (7) 5A
701 6A
8| (9 |6 |1B
9| (10) 8A
10| (11) 9A
11| (12) 10A
12 | (13) 11A
13 12A

It looks as though we are still a long way off getting
rid of all of our chains. But suddenly everything collapses
at the very next step!

3BB1—-10B1
4BB2—11B2
5BB3—12B3
6BB4—13B4
/BB5—14B5
2BB7—>9B7
13AA8—14A8
11BB9—2B9
12BB10—3B10

X X X X X X X X X
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13BB11—-4B11

13ABB12—14BB12—5B12
13AABB13—-514ABB13—-8BB13—6B13
14AAAAAAAL14—->BAAAAAALI4—-IAAAAATLL
—10AAAA14-511AAA14-512AA14—-13A14
14AABB14—-8ABB14—-9BB14—-/B14 X

I X X X

A B
2) [(8) |1
3) | 9 |1A
4) | 10]2A
(5) | 11]3A
6) | 12 | 4A
(7) | 13]5A
1 |14 |6A
9 | 6 |1B
(10)| 7 |8A
(11) | 1 |9A
(12) | 2 | 10A

3

4

5

coO~NOoO Ol WDN B

O

[HEN
o

[EEY
[EEN

[EEY
N

(13) 11A
(14) 12A
8 13A

[HEN
w

[HEN
SN

I’ll now rework this using the compact notation.
But I’'ll use the same marriage choices.
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A°A A A A A AAADB B

112 |3 |4 |5 |6 |7 |1 |2 |3 |10]1
2|/3 |4 |5 |6 |7 |1 |2 |3 |4 [11]|2
314 |5 |6 |7 |1 |2 |3 |4 |5 [12]3
45 |6 |7 |1 |2 |3 |4 |5 |6 |13|4
5|6 |7 |1 |2 |3 |4 |5 |6 |7 |14|5
6/7 |1 |2 |3 |4 |5 |6 |7 |1 |8 |6
/711 |2 |3 |4 |5 |6 |7 |1 |2 |9 |7
8/9 [10]11/12)13|14/8 |9 |10|1 |8
9/1011|12/13|14|8 |9 |10|11 |2 |9
10111213148 |9 |10]11/12|3 |10
1111213148 |9 10|11 ]12/13[4 |115
12113148 |9 |10]11]12|13|14|5 |12
13/14/8 |9 |10(11/12]13|14|8 |6 |13
14|18 |9 |10]11]12/13]14|8 |9 |9 |14
A B A B
1L (2 | (8 81 _(9) 6
2|1 (3 9 9] (10) 7
31 4 10 10| (11) 1
41 (5 11 111 (12) 2
5| (6 12 12 (13) 3
6| (7) 13 13| (14) 4
71 14 141 8 S

How did we know that this combination of
strategies was going to work? Perhaps intuition. But of
course nothing beats good old group theory. In many
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cases we can manipulate the presentation and get our
answer much more quickly.
In this case we have A = A®*7 = A= (A?)*=(B?)*=B"*
so G =(B| B, B4
= (B | B4, the cyclic group of order 14.

§ 5.9. Direct Products

The direct product
of two groups G, H is the
set of ordered pairs where (
the first component comes
from G and the second from H, that is,

{(@.h)|geG, heH}
It is denoted by G x H.
Multiplication in G x H is component-wise, that is
(91, h1).(92, h2) = (9292, hshy).
The identity is (1, 1) and (g, h)™ = (g%, h™).

Strictly speaking the operation x is not
commutative in that H x G is usually different to G x H.
However they are isomorphic, by matching (g, h) in G x
H with (h, g) in H x G.

If the groups are written additively we call it the
direct sum and write it as G @ H. Multiplication is
defined by (g1, h1) + (g2, h2) = (g1 + g2, h1 + hy). The
identity is (0, 0) and the inverse of (g, h) is (—g, —h).

If G, H are finite then the order of G x H (or G &
H if the groups are written additively) is |G|.|H|.
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Within G x H there is a subgroup {(g, 1) | g € G}
that is isomorphic to G and another subgroup
{3, h) [h e H}
that is isomorphic to H. Moreover any element of the first
subgroup commutes with any element of the second since

(9. D@, h)=(g, h) = (1, h)(@. 1).

Example 18:
Let G = Sy, the symmetric group on {1, 2, 3,4} and
H = Z7* the set {1, 2, 3, 4, 5, 6} under multiplication
modulo 7. Then |G x H| = 24 x 6 = 144.
An example of multiplication is:
((12)(34), 5).((123), 4) = ((12)(34).(123), 5.4)
= ((134), 6) and
((1234), 2)1 = ((1234)1, 271) ((1432), 4).

Example 19: Let G = Z, the group of integers under
addition and let H = R[x], the set of real polynomials
under addition. Then G x H is infinite and

(5, x+1).(3, x—1) = (15, x* - 1).

Example 20: Let G = (A, B | A% B2, ABAB) and
H = (A | A®%. Then G x H is isomorphic to
(A, B, C| A% B?, C° ABAB, AC=CA, BC=CB).

If we have a presentation in which the generators

can be split into two subsets such that those in one subset
commute with those in the other, and if there are no other
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relations that involve generators from both sets, we can
split the group as a direct product.

Example 21: G = (A, B | A% B?, AB = BA).
In this presentation the relation AB = BA states that A
commutes with B. Apart from this there’s no relation
involving both A and B. So the group splits into a direct
product:
Gz=HxKwhere H=(A|A* and K=(B|B?). We don’t
need to use the Todd-Coxeter algorithm to obtain group
tables for these cyclic groups. The group table for H is

1 2 3 4

11 1 2 3 4
21 2 3 4 1
3| 3 4 1 2
4| 4 1 2 3
and for K it is
1 2
11 1 2
21 2 1

The elements of G = H x K are
(1,1),(2,1),@3,1),4,1),(@1,2),(2,2),(32),4,?2).

Let’s code these as follows.

1=(1,1) 5=(1,2)

2=(2,1) 6=(2,2)

3=(3,1) 7=(3,2)

4=(4,1) 8=(4,2)
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You need to keep track of which groups these come
from. So in the coding 7 = (3, 2), you need to remember
that 7 e Hx K, 3 e Hand 2 € K and in the coding 1 = (1,
1) the three 1°s all represent different identity elements.
The first is the identity of H x K, the second is the identity
of H and the third is the identity of K.

In calculating the group table for G we proceed as
in the following examples:
2x7=(2,1)3,2)=(2%x3,1x2)=(4,2)=8
7x8=(3,2)(4,2)=(3x4,2x2)=(2,1)=2

So the group table for G i

12345678
11112 3|3]5|/6|7|8
212|3]4|1]16]7|8]|5
313/4|1|2]7|8|5|6
4014111238 /5/6|7
515/6|7(8)1]2|3 4
616|7|8[5]2|3]4]|1
717185643412
818/5/6//74411/2.3

Notice that the top 4 x 4 portion of the group table
for G is simply the group table for H. This is a
consequence of the very orderly way in which we ordered
the pairs. <1 v

Y | X
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Notice that the next 4x4 block on the right can be
obtained by simply adding 4 to each entry in the first
block. In fact the entire table is built out of just two 4x4
blocks, X and Y where X is the group table for H and Y
Is obtained from X by adding 4 to each entry.

Note too that the pattern of these blocks is that of
the group table for K. Noticing these patterns we can
make very short work of completing the group table for
G. (It’s made even easier if we do the whole job in a word
processor where we can cut and paste!) Patterns like this
always occur whenever we have a direct product.

Example 22:

G=(A,B,C|A% B3 C? AB=BA, ACAC, BC =CB).
Here there are two relations that say that B commutes with
A and with C. Apart from these there’s no relation
connecting B with either A or C. So the group splits into
a direct product:

G =H x Kwhere H={(A, C| A% C? ACAC) and
K=(B|B3.

We don’t need to use Todd-Coxeter on the second factor.
The group table for (B | B®) is:

NP WlWw

N
w|N|k |-
Rlw(non
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Applying the Todd-Coxeter algorithm to

H = (A, C| A% C? ACAC):

1AAAA1I-2AAA1I4AAL1—>6AL

1CC1-3C1

1ACAC1-5>2CAC1—->2CA3—>5A3

2AAAA2—-2AAAL

2CC2—>5C2

2ACAC2—>4CAC2—>4CAS—>TAS

3AAAA3—->3AAAS—->3AAT—8AT

3CC3—3C1

3ACAC3—-3ACA1->3AC6—8C6

4AAAA4—-4AAA2—4AAL

4CC4—->7C4

4ACAC4—6CAC4—>6CA7T—6C8

SAAAA5—-3AAAS

5CC5—-»2C5

SACAC5—-3CAC5—1AC5—2C5

6AAAA6—-1AAA6—2AA6—4AL

6CC6—8C6

6ACAC6—1CAC6—3AC6

TAAAAT-5AAAT—-3AAT—-8AT

[CC7/—>4C7

[ACAC7—->5CACTI—»>2AC7—4C7

8AAAAB—->TAAAB—->5AA8—3A8

8CC8—6C38

8ACAC8—7CAC8—->4AC8—6C8
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A C
2| 3|1
4] ) A
@] 1 ]c
6) | (7) | 2A
3] 2 ]2c
8 |4A
4 |4C
6 |3A

O ~NOOT B~ WDNPE

1
S
7

Notice that we departed from the default choice
strategy a little in that we didn’t define 6 as 3A. We
defined 6 as 4A because we had a short chain that could
be contracted to a link by defining it in this way. The
group table for H is:

12 3 4 5 6 7 8

1 A C 2A 2C 4A 4C 3A
1111234 |56 |7]8
212|456 | 7]1]8]3
313|181 7|6 |5]4]|2
414|671 18235
5151312 8|1 ]| 7|64
6161182 [ 3|4 ]|5]|7
7171541312 ]|8]1]6
8|18(7]|6] 5|4 ]3| 7|1
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The elements of G = H x K are

Let’s code these as follows:

1,1),21),..,61),
(1,2),(2,2),..,(28),
(3.1),(3,2),..,(3,8)

1=(1, 1) 9=(1,2) |17=(L 3)
2=(2,1) 10=(2,2) |18=(2,3)
3=(3,1) 11=(3,2) |19=(3,3)
4=(4,1) 12=(4,2) |20=(4,3)
5= (5, 1) 13=(5,2) |21=(5,3)
6=(6,1) 14=(6,2) |22=(6,3)
7=(7,1) 15=(7,2) |23=(7,3)
8=(8,1) 16=(8,2) |24=(8,3)

When we calculate the group table for G we find
that it can be built up as a 24 x 24 table from three 8 x 8

blocks:

The block X is the group table for H, the block Y
Is obtained from this by adding 8 to each of the entries in
X, and Z is obtained from X by adding 16 to each entry.
The pattern for these blocks follows that for the group

table for K.

X1lY

Z

Y | Z

X

Z | X

Y
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EXERCISES FOR CHAPTER 5

EXERCISE 1: Find the group table of the groups (A),
(B) and (C). Use the Restricted Todd-Coxeter using the
Compact Notation.

(A): (A, B|A% B® (BA)®).

(B): (A, B|AS, A’B?),

(C): (A, B, C| A% B? C3 CBCB, AB =BA, AC =CA).

EXERCISE 2: Find the group table of:
(A, B|A%, B?, BABA?),
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SOLUTIONS FOR CHAPTER 5

EXERCISE 1:

A A B B B B A B A B A

(A): (A, B|A?, B?, (BA)®).
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The group table is:

10B

2B 3A 3B 4A 4B 5B 6A 9B
10 11 12

B

A

2 3 4 5 6 7 8 9
8

1

10

12 | 11
-
5

10 | 11 |12

9

12

9

10

2

11 |12 |2
12 |11 |1

8
6

1
2

11 (10 |1

10

10
9
8

12
11

4

10
6

7
5

11
12

10|10 |6

111112 |5

1212 |11 |7

(B): (A, B|AS, AB2).

B

A A A A A A A A B
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The group table is:

10
10

2A A 4A B O6A T7A 8A 9A
3 4 5 6 7 8 9

A
2

1

10

7

10 {10 |6

276



Note that we had to be canny about choosing the marriage
partners. If your computation went beyond 10 it would
either eventually reach a contradiction or go on forever.
Choice of marriage partners is so important!

(C): (A, B, C| A% B2, C3 CBCB, AB = BA, AC = CA).
~ (A | A% x (B, C | B, C? CBCB).
B B C C C C B C B

12136113 [5 [2 ]1
21245204 |6 |1 |2
3536136 [4 |5 |3
4645245 [3 |6 |4
s 352452 |1 |3 |5
6| 461361 |2 |4 |6

B C

1((2) | 3)

2[1 (@)

31(5)[(6)

4|6 |5

5[3 |2

6la |1
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The group table for this group is:

B C 2C 3B 3C
12 3 4 5 6
1{1]2|3]|4 |5 |6
212111413 |6 |5
313|562 |4 |1
41416 |5]1 [3 |2
5/5[3|2]6 |1 |4
6]16/4]|1]5 (2 |3
The group table for the cyclic group is:
1 A
111 A
AlA|l
We code the ordered pairs as follows:
1112 13|14 15|16 |A1|A2 | A3 |A4 | A5 | A6
112 |3 |4 |5 1|6 |7 |8 |9 |10]11 |12
The group table for the direct product has the form:
1-6  7-12
1-6 T |[T+6
7-12|T+6| T

Where T is the group table for the second group and T +
6 is that same table with 6 added to every entry. In full the
group table for the entire group is:

278



1 2 3 4 5 6 7 8 9 10 11 12
111 12 |3 |4 |5 |6 |7 8 9 10 | 11 |12
2 12 1 (4 (3 |6 |5 (8 7 10 | 9 12 | 11
313 (5 |6 |2 |4 119 11 |12 | 8 10 | 7
4 |4 6 5 1 3 2 10 (12 (11 |7 9 8
5 15 3 2 6 1 |4 11 |9 8 12 |7 10
6 |6 |4 1 5 2 3 12 {10 |7 11 |8 9
7 17 (8 |9 10 (11 (12 |1 2 3 4 |5 6
8 |8 |7 10 | 9 12 (11| 2 1 |4 3 6 5
9 9 11112 |8 10 | 7 3 5 6 2 4 1
10110 |12 {11 |7 |9 |8 |4 6 5 1 3 2
1111119 |8 12 |7 10 | 5 3 2 6 1 4
12112 |10 | 7 11 (8 |9 |6 4 1 5 2 3

EXERCISE 4: (A, B|A*% B2, BABA?).

If you were to try the Restricted Todd-Coxeter
Algorithm, then whatever you chose for marriage partners
you would get contradictions and you would need to
abort. I haven’t shown you the full version and, if you had
used it, making the ‘right’ choices, you would be able to
work out the group table. At certain stages, when you got
contradictions you would have to identify two codes as
representing the same group element. A lot of work.

But, using a little group theory, you can easily
identify this group.

The relations A* = 1 and B2 = 1 mean that we can
write BABAA =1 as BtAB = A2,
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Then BlA?B=A*=1andso A2=B1B1=1. But
then BAB = 1. Since B = B! this becomes B1AB = 1
which gives A = 1.

So the group is simply (B | B2), the cyclic group of
order 2, and you don’t need me to write out its group table.

Sometimes using the Todd-Coxeter Algorithm is
like using a sledgehammer to crack a nut. This example
highlights the fact that the Todd-Coxeter Algorithm
performs badly with an unnecessarily complicated
presentation.
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