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5. THE TODD-COXETER 

ALGORITHM 
 

§5.1. Presentations 
 Presenting a group by generators and relations is by 

far the most compact way of describing a group and it is 

often the way it arises in applications. So we need some 

way of unravelling the structure of the group from its 

presentation. The Todd-Coxeter Algorithm aims to do 

just that. 

 If  is a set of symbols, a group word on  is a 

string of elements of  and their inverses. The inverse of 

a symbol X is just the formal expression X−1, treated as a 

single symbol. For convenience in our calculations we 

will use lower case letters to denote inverses.  So, for 

example, we use the letter a to represent A−1. 

 

Example 1: The group word AAbABaaa represents 

A2B−1ABA−3. If A4 = 1, the group words AAAAA, A and 

aaa all represent the same element. 

 

 In the following description of the algorithm we 

sometimes use a capital letter, such as X, to represent 

either a generator or the inverse of a generator. In that case 

the corresponding lower case letter represents its inverse. 

So if X is actually the inverse of a generator, x would be 

the corresponding generator itself. 
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 A presentation of a group is a description  | R 

where  is a set of generators and R a set of group words, 

called relators. Every element of the group is represented 

by a group word on . Two group words represent the 

same element if the equality is a consequence of the 

relations in R. (In chapter 9 we’ll define  | R more 

precisely as a quotient group of a free group.) Sometimes 

we write a relator U−1V or UV−1 as the relation U = V. 

 A free group is one with no relations, that is, G is 

free if G   |  for some . A free group on a single 

generator is the infinite cyclic group. 

 A group G is finitely generated if it has a 

presentation  | R where  is finite and it is finitely 

presented if it has a presentation  | R where both  and 

R are finite. In this chapter we only consider finitely 

presented groups. 

 

Example 2: A, B | A4, B2, BA = A−1B is a finitely 

presented group. 

We will write this as A, B | A4, B2, BA = aB. 

We can also write this as  A, B | A4, B2, ABAB because 

we can deduce the relation (AB)2 = 1 from A4 = 1, B2 = 1 

and BA = A−1B and conversely we can deduce BA = A−1B 

from the relations A4 = 1, B2 = 1 and (AB)2 = 1. 

 

An equivalent presentation of this group is 

A, B | A4, B2, B−1AB = A−1 

which we shall write as A, B | A4, B2, bAB = a. 
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 The elements of this group are products of powers 

of A’s and B’s. Since BA = A−1B we can bring all the A’s 

to the front and so every element can be put in the form 

ArBs. 

Since A4 = 1 and B2 = 1 we can assume that r = 0, 

1, 2 or 3 and s = 0 or 1. The group thus has 8 elements: 1, 

A, A2, A3, B, AB, A2B, A3B. It is the dihedral group of 

order 8.  

 

 You may feel that you were able to predict that this 

group has order 8 from the relators A4 and B2 (since 4  2 

= 8). But it’s not always so simple. For example the 

following group may appear to have order 4 but in fact it 

is infinite. 

 

Example 3: A, B | A2, B2 is infinite. 

The elements are strings of alternating A’s and B’s (any 

successive pair of A’s or of B’s can be removed) so the 

distinct elements are: 

1, A, AB, ABA, ABAB, ..., B, BA, BAB, BABA, ..... 

For example the product of BAB and BABABA is 

BABBABABA = ABA. 

The inverse of BABA is ABAB and the inverse of ABA 

is ABA itself. 

Any string that starts and finishes with the same 

symbol has infinite order while if the first symbol is 

different to the last the string has order 2. 

 So C = AB has infinite order as has C−1 = B−1A−1 = 

BA. The group can be generated by A and C (since B = 
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AC) and since BC = BAB = C−1B we can present the 

group as C, B | B2, BC = C−1B. Rewriting C as A this 

becomes A, B | B2,BA = A−1B which we recognise as 

belonging to the dihedral family. We call it the infinite 

dihedral group and denote it by D. 

 

 On the other hand the group in the next example is 

much smaller than it might appear. 

 

Example 4: A, B | A5, B3, BA = A2B has order 3. This 

is because BAB−1 = A2 so 

B2AB−2 = B (BAB−1)B−1 

             = BA2B−1 

             = (BAB−1)2 

             = (A2)2 

              = A4. 

Continuing we get B3AB−3 = A8 = A3. 

Since B3 = 1 it follows that A = A3 and hence A2 = 1. 

But A5 = 1 so A = 1. So this is simply the cyclic group of 

order 3 in disguise. 

A simpler presentation would be B | B3 or, since we 

could use any letter for the generator, A | A3. 

 

§5.2. Chains and Links 
Suppose we have a finite presentation  | R for a group 

G. An element of G will be represented by many group 

words. We attempt to assign to each element a unique 

integer code, with 1 representing the identity and 2, 3, ... , 
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N representing the other elements. If we succeed, the 

order of the group is N. Of course this will only happen if 

G is finite. 
 A chain is an expression mWn, representing the 

equation mW = n, where  m  and  n  are integer codes and 

W is a group word. 

 The length of a chain mWn is the length 

of the word W (that is, the number of symbols, 

counting each generator or its inverse as a 

single symbol). 

 

Example 5: 7AAbbb2 is a chain of length 5 

representing 7  A2B−3 = 2.  Here 2, 7 and 

A2B−3 are all elements of the group. The 

elements represented by the integer codes  2  

and  7  will also be expressible as group words 

and the group word A2B−3 will also have an 

integer code. 

 

 At the outset the elements of the 

group being presented will be 

expressed as words in the generators 

but, since many different words can 

represent the same element, this is 

not a satisfactory notation. 

Gradually, as the algorithm progresses, we assign a 

unique integer code to each element. 

 A chain mWn is a link if it has length 1, that is, 

where the word W is a generator or the inverse of a 
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generator. Once we know all the links we can express the 

codes in terms of the generators and hence obtain the 

group table. 

 

Example 6: If B is one of the generators then the chain  

6B2  is a link.  It provides the information that 6B = 2. For 

example, if we have already expressed 6 as the word 

BA3B−2 then we can express 2 as BA3B−1. 

 

 The links are used to build up a table, called the 

Link Table: 

 

 A B ... 

1    

2    

...    

 

Once we have completed this table we can produce the 

group table. 

 

Example 7: If we have a group generated by A  and  B  

with the following link table, the group has order 6. 

 A B 

1 2 4 

2 3 5 

3 1 6 

4 6 1 

5 4 2 

6 5 3 
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We can use the link table to express each element as a 

group word. For example, since 1 is the identity it follows 

that the element 2 is A and the element 4 is B. In the next 

row we have the fact that 2A = 3 so 3 = AA = A2.  Doing 

this for all the elements we get: 

 A B  

1 2 4 1 

2 3 5 A 

3 1 6 2A 

4 6 1 B 

5 4 2 2B 

6 5 3 3B 

 

The group word associated with each is, of course, not 

unique. We can now complete the group table. 

For example, 5.3 = 5.2A = 5AA = 4A = 6  and 

                      6.5 = 6.2B  = 6AB = 5B = 2. 

 If G is a generator then the links rGs and sgr, where 

g = G−1, give equivalent information. This is because rGs 

represents the equation rG = s while sgr represents the 

equivalent equation sG−1 = r. 

We call these links conjugates of one another. 

 

Example 8: The conjugate of the link 3B5 is the link 5b3. 

 

§ 5.3.  Restricted Todd-Coxeter Algorithm 
 To make it easy to follow the algorithm I’ll use a 

mixture of metaphors. So far I’ve used the rather 

mechanical metaphor of ‘chains’ and ‘links’ to describe 
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the ingredients of the algorithm, but to describe the 

overall behaviour I’ll use the metaphor of population 

dynamics. 

 A chain is said to die when it contracts down to a 

link. Throughout the course of the algorithm chains are 

born, contract and eventually die and the success of the 

algorithm for a particular presentation depends on the 

balance between the birth and death rates. The birth rate 

is uniform (with as many new chains born in each 

generation as there are relators) but the death rate can be 

unpredictable. At first the set of live chains grows, with 

more being born than die. If all goes well the time comes 

when the balance shifts and the population decreases and 

is finally wiped out. But it can happen that the population 

grows indefinitely and in this case the algorithm will fail 

to terminate. 

 The algorithm proceeds in a cycle with three stages 

occurring at each generation: 

BIRTH, CONTRACTION and MARRIAGE. 

We begin with BIRTH. 

 

BIRTH RULE 

Having just created the integer code m we add the 

chain mRm to the list of chains for each relator R. 

 

 Suppose we are processing the presentation 

A, B, ... | R, S, ... . 
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Then the relators R, S, ... 

represent the identity. So for 

every integer code m. the 

chains mRm, mSm, ... are 

valid because they simply 

state that m1 = m. At each 

generation, after 

introducing a new integer code, these corresponding 

chains are born, one for each relator. 

 This is how the algorithm gets off the ground 

because we begin with the code 1, representing the 

identity and so the first chains to be born are: 

1R1, 1S1, .... 

 

Example 9: For A, B | A4, B2, BA = A−1B = A, B | A4, 

B2, ABAb the process begins with the birth of the chains: 

1AAAA1, 1BB1, 1ABAb1. 

 

 Next we carry out any contractions that are 

possible. 

 

CONTRACTION RULE 

If X is a generator (or the inverse of a generator) and 

rXs is a link we may contract  rX  to  s  at the start of 

any live chain and contract  Xs  to  r  at the end of any 

live chain: 

rX → s,   Xs → r 
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 After the first generation of chains are born there 

are no links and so no 

contraction is possible. 

One way to obtain links 

is for chains to contract 

to a link, but clearly that 

cannot occur until we 

have some links already. 

Fortunately there’s 

another way of obtaining links, through so-called 

‘marriage’. 

 

 The link rXs represents the equation rX = s, so 

clearly rX can be replaced by s. If Xs is any live chain, 

ending in Xs then s = X = rX, so  = r. Hence  r is a 

valid chain (representing  = r).  

 

Example 10: If 3A5 is a link (equivalent to the conjugate 

link 5a3) we may perform the following contractions: 

3ABBB3 → 5BBB3, 

5aBBAbA2 → 3BBAbA2, 

2ABAA5 → 2ABA3, 

2ABa3 → 2AB5. 

 

If 5B4, 2B3 are also links we may make the following 

further contractions of 5BBB3: 

5BBB3 → 4BB3 → 4B2. 
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This chain has now contracted down to a link and so, as a 

chain, it dies. But it may well be a new link, enabling 

further contractions. 

 

DEATH RULE 

Whenever a chain contracts to a link it ‘dies’. 

The information it conveys is transferred to the link 

table. 

 

If the new link has the form rGs, 

where G is a generator, or the 

inverse of a generator, we write 

s in row r, column G of the link 

table. Then we can write the 

corresponding information for 

the equivalent link sgr. 

 When the dust finally 

settles, and we still have some 

live chains, but no more contractions are possible, we 

must create a new integer code. 

 

MARRIAGE RULE 

If the set of live chains is non-empty, and no further 

contractions are possible, assign the next available 

code, m,  by creating a new link of the form mGr or 

rGm where G is a generator or the inverse of a 

generator for some r < m. 
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 The creation of the new link can be thought of as a 

‘marriage’ where the new code ‘marries’ one of the 

existing ones. Like marriage in western society there is 

freedom to choose a partner – the algorithm doesn’t 

arrange the marriage. But, as with real marriages there are 

sensible choices and less sensible ones, so it is with the 

Todd-Coxeter Algorithm. At the time of a marriage it is 

impossible to know for certain that a given choice is going 

to be successful! 

Unlike human marriage the choice goes beyond 

that of choosing a partner – the choice of generator comes 

into it too. And different codes 

can ‘marry’ the same code, using 

different generators. Perhaps the 

analogy is starting to break 

down, so let me explain in a 

more mundane fashion how this 

so-called ‘marriage rule’ 

operates. 

The rule defines the next integer code in terms of 

the preceding ones. Having done that, a whole new 

generation of chains is ready to be born. Further 

possibilities for contraction now arise. There is now a 

whole new generation of chains to process, but more 

importantly the new link can be used in further 

contractions. 

 

Example 11: Suppose we have assigned codes 1, 2, 3 and 

have generated all the corresponding chains and 
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contracted them as far as possible. At that stage we need 

to define a new integer code by creating a link to define 

4. For example we might create the link 4A2. This means 

putting 4A = 2 or, in other words, defining 4 as 2A−1. Or 

we could create 3B4, which defines 4 as 3B. 

 Note that we are not allowed to create a link of the 

form  mAm, defining  m  in terms of itself. Nor can we 

define  m  in terms of a future code. If only codes 1, 2, 3 

have been assigned then the code 4 can’t be defined by a 

link such as 4B7. In defining a new code m the other code 

must be less than m. 

 One very good strategy is to create the new link so 

as to fill up the next available blank in the Link Table. 

This could be considered the default strategy and it is the 

one that is mostly used in the following examples. 

However the unsolvability of the word problem means 

that there is no strategy that can be guaranteed to always 

work. So, there will be times when this default strategy 

will be the wrong thing to do. 

 

Example 12: 

 Suppose we have assigned codes 1, 2, 3 and we 

need to assign the code 4 at the stage where our table of 

links so far is: 

 A B 

1 2 3 

2 1  

3   



 226 

We may decide to create the link 2B4 or 3A4 or 3B4. The 

default strategy would be to create the link 2B4. 

 But another consideration is how useful the newly 

created link would be at the moment. If, in the above 

situation, we had the chain 3BA3 we might decide to 

create the link 3B4 because this could be used 

immediately to contract 3BA3 to 4A3 thereby giving yet 

another link. 

 

Finally we must ask, “How does the algorithm 

begin and how does it terminate?” It begins with the 

empty set of chains and with the integer code 1 being 

created, representing the identity. This immediately 

causes a number of chains to be born, and the process of 

birth, contraction and death to take place. 

 

STARTING 

Begin with an empty set of chains and 

assign the code 1. 

 

The restricted algorithm that we are describing 

terminates in one of two ways. For a start there is the 

possibility that a chain contracts to a link which conflicts 

with one that we already have. That is, when we come to 

enter the new link in the link table we find that this cell is 

already occupied with a different code. Or we may find 

that a code is repeated in a row. 

For example if we have the two links 5B7 and 5B9 

then 5B = 7 and 5B = 9, meaning that we have 
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inadvertently issued two different codes for the same 

element. This is called a contradiction. It could mean that 

you’ve made a mistake, but it can also arise with no error 

being made. 

The complete axiom arranges for the two codes to 

be identified, so that the larger code is replaced by the 

smaller one in all chains and links. Then the usual process 

continues. We will only consider the Restricted 

algorithm, whereby we abort if we reach a contradiction. 

Of course, you should check your working if a 

contradiction arises. But if the contradiction is really there 

the only thing only thing to do is start again with different 

choices, or perhaps rewrite the presentation and start 

again. In everything that follows, when we refer to the 

Todd-Coxeter Algorithm we will mean the restricted one. 

It is also possible that we have two links with the 

same codes but different generators. For example you 

may find that you get the two links 5A7 and 5C7. This 

would mean that having 5A = 7 and also 5C = 7. This 

would mean that A = C. Again this is more likely to be 

due to an error. But it can occur by virtue of the fact that 

the relators in the presentation might lead to such a 

collapse. For example in the presentation 

A, B, C | A4, B2, (A−1C)2, (A−1C)7, BA = A−1B, 

the relators (A−1C)2 and (A−1C)7 together imply that A−1C 

= 1, or A = C. Such a situation can’t be remedied by 

making better choices. The problem is intrinsic to the 

presentation. If you ever get such a situation you should 
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first check your work, and then, if you are convinced you 

have made no error, modify the presentation. 

 

But the normal way for the algorithm to terminate, 

and the only way that gives us a group table, is to arrive 

at a situation where we have a complete Link Table, with 

no blanks. Clearly a completed link table will allow all 

chains to be contracted to links, so that all chains will die, 

but it is not necessary to do this. 

 

FINISHING: 

Terminate when either: 

(1) All chains have become links and the table of links 

is complete or 

(2) You get a contradiction in the Link Table (an 

abortion). 

 

 If the algorithm terminates under (1) it will have 

been successful and we will have a group table. If it 

terminates under (2) the algorithm fails. This will either 

mean that we could have made better choices (we could 

begin again and vary our strategy). A further possibility 

is that we never reach either state (1) or (2) and the 

algorithm fails to terminate. This will occur if the group 

is infinite. 

 With the Unrestricted Algorithm, where 

identifications are used to deal with contradictions, it is 

the case that if the group is finite there will definitely be 

a sequence of choices that will lead to the algorithm 
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terminating successfully. The problem is that there is no 

strategy that can be guaranteed to achieve this. 

 

THE (RESTRICTED) TODD-COXETER 

ALGORITHM 

Suppose  G1, G2, … , Gm | R1, R2, … , Rn  is a 

presentation for a group G. 

(1) Initially let N = 1, C = the empty set of chains, and 

L a table with 2m columns with each cell blank. The 

number of rows is initially 1. The 2m columns are 

labelled by the generators and their inverses. 

(2) For each relator Ri adjoin the chain  NRiN  to C; 

(3) Where possible, contract chains using the links in 

L. Any chain that contracts to a link is transferred to 

the link table and the chain dies. It’s removed from the 

chain table, C. 

(4) If this results in two integers being assigned to the 

same cell in the Link Table, abort the algorithm.   

(5) When no further contraction is possible, and L has 

a blank cell, increase N by 1.  Then marry N to one of 

the existing codes by inserting a new link into the Link 

Table. Then GO TO (2). 

(6) If L has no blank cell terminate. 

Then the group has order N and the group table can 

be constructed from the information given by the links 

in L. 

 

In performing the Todd-Coxeter Algorithm by 

hand we set out our working in three tables: 
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CHAIN TABLE: This describes the successive 

contractions of the chains. Each of the chains that are born 

is placed at the start of a new row and their successive 

contractions are recorded. 

 

LINK TABLE: Once a proper chain becomes a link the 

information is transferred to the link table. At the right of 

the table record the link definitions for each code. The 

code ‘1’ is assigned to the identity so we write 1 in the 

definition column of the table for the code ‘1’. 

 

 A B ...  

1   … 1 

2   …  

... … … …  

 

If the relators involve inverse it is useful to have extra 

columns for inverses of generators. For example, if we 

have the relator CBC−1A, which we would write as CBcA, 

we should have a column for c. Whenever we have a link 

mCn we should enter n in the mC position of the Link 

Table and m in the nc position. This is because mCn and 

the conjugate ncm, carry the same information since mCn 

means mC = n and ncm means nC−1 = m. 

 Suppose we have just created, or discovered, the 

link 2C3. Then we enter it, and the conjugate link 3c2 into 

the Link Table as follows: 
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 A B C c  

1     1 

2   3   

3    2  

But don’t bother with these inverse columns if there are 

no inverses in the relators. 

 

GROUP TABLE: This is the ‘multiplication’ table for 

the group. 

 

 1 2 ... 

1 1 2 … 

2 2  … 

... … … … 

 

§ 5.4. Examples 
 Perhaps you find all this very confusing. That’s not 

surprising, because this is probably the most complex 

algorithm you’ll ever have to carry out. Also, what you 

might find disquieting, is that the algorithm is not 

deterministic. At one stage in every generation you have 

to make a ‘marriage’ choice and the success depends on 

whether you make the ‘right’ one. I can give advice that 

can help, but the unsolvability of the word problem 

guarantees that no choice strategy exists that would 

always be successful. 

 Having said this, it is remarkable how often even 

the restricted algorithm works, provided we start with a 

‘good’ presentation and use the couple of simple 
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strategies that I describe. Work through the following 

examples and you’ll eventually find that it becomes 

second nature. 

 

Example 13:  G = A, B | A2, B2, (AB)2. 

(For clarity I’ll describe the appearance of the tables at 

each generation and make bold the additional information 

at each stage. Normally you would carry out your working 

in the one set of tables.)  

We begin with N = 1. For each relator a chain is 

born. 

1AA1   A B  

1BB1  1   1 

1ABAB1      

 

Having no links we clearly can’t make any contraction 

so we must create a link to define 2 (the marriage step). 

Using the default strategy we create the link 1A2, 

thereby defining 2 = A. We write 2 in the ‘1’row and A 

column. We enclose it in parentheses to record the fact 

that this link was created, rather than found as a result of 

contracting a chain. This makes it easier to follow the 

sequence of events when the table is completed. 

 

1AA1   A B  

1BB1  1 (2)  1 

1ABAB1  2   A 
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Having defined a new code, a new generation of chains 

is born, one for each relator. 

 

1AA1   A B  

1BB1  1 (2)  1 

1ABAB1  2   A 

2AA2      

2BB2      

2ABAB2      

 

Some contraction is now possible. Any ‘1A’ can be 

replaced by ‘2’ and any ‘A2’ can be replaced by ‘1’. We 

use an arrow to separate a chain from its contraction. 

 

1AA1→2A1   A B  

1BB1  1 (2)  1 

1ABAB1→2BAB1  2   A 

2AA2→2A1      

2BB2      

2ABAB2      

 

Three chains have contracted, and two of them have 

contracted down to the same link 2A1. This is a new link 

and so is transferred to the link table. Those two chains 

are considered ‘dead’ and don’t enter into the remaining 

computation so we mark them by the symbol ‘’. 
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1AA1→2A1   A B  

1BB1  1 (2)  1 

1ABAB1→2BAB1  2 1  A 

2AA2→2A1 =     

2BB2      

2ABAB2      

 

The new link 2A1 has been obtained twice. The first 

time it gets recorded as ‘’ but the second time it gets 

‘=’, indicating that the link is repeating one we already 

have. In general, any chain that becomes equal to one 

that we have elsewhere in the Chain Table get’s killed 

immediately and is recorded as ‘=’. 

 

The new link means that chains starting with ‘2A’ or 

ending with ‘A1’ can be contracted. This allows just one 

more contraction: 2ABAB2 → 1BAB2. 

 

1AA1→2A1   A B  

1BB1  1 (2)  1 

1ABAB1→2BAB1  2 1  A 

2AA2→ 2A1 =     

2BB2      

2ABAB2→1BAB2      

 

No further contraction is possible so we must create a 

new code. The default strategy would create 1B3. This 
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seems to be a good idea because it will be useful in 

contracting the two chains that begin with ‘1B’. 

 

1AA1→2A1   A B  

1BB1→3B1  1 (2) (3) 1 

1ABAB1→2BAB1  2 1  A 

2AA2→2A1  3   B 

2BB2      

2ABAB2→1BAB2→3AB2      

3AA3      

3BB3→3B1 =     

3ABAB3→3ABA1      

 

We have now (twice) obtained the link 3B1. We enter 

this up in the link table. This link allows some further 

contraction. 

 

1AA1→2A1   A B  

1BB1→3B1  1 (2) (3) 1 

1ABAB1→2BAB1→2BA3  2 1  A 

2AA2→2A1  3  1 B 

2BB2      

2ABAB2→1BAB2→3AB2      

3AA3      

3BB3→3B1 =     

3ABAB3→3ABA1→3AB2      

 

No further contraction is possible so we create code ‘4’. 
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1AA1→2A1   A B  

1BB1→3B1  1 (2) (3) 1 

1ABAB1→2BAB1→2BA3  2 1 (4) A 

2AA2→2A1 = 3  1 B 

2BB2  4   2B 

2ABAB2→1BAB2→3AB2      

3AA3      

3BB3→3B1 =     

3ABAB3→3ABA1→3AB2      

4AA4      

4BB4      

4ABAB4      

Many contractions are now possible, leading to further 

links, leading to further contractions until all chains 

become links and the link table becomes complete. 

1AA1→2A1  

1BB1→3B1  

1ABAB1→2BAB1→2BA3→4A3  

2AA2→2A1 = 

2BB2→4B2  

2ABAB2→1BAB2→3AB2→4B2 = 

3AA3→3A4  

3BB3→3B1 = 

3ABAB3→3ABA1→3AB2 = 

4AA4→3A4  = 

4BB4→2B4 = 

4ABAB4→3BAB4→1AB4→2B4 = 
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 A B  

1 (2) (3) 1 

2 1 (4) A 

3 4 1 B 

4 3 2 2B 

 

We can now complete the group table. The first row and 

column are easy, since ‘1’ is the identity. 

 

 

 

 

 

 

Now  2 = A so the ‘2’ column in the group table is a copy 

of the A column in the Link Table. Similarly, as 3 = B, 

the ‘3’ column in the group table is a copy of the B column 

in the Link Table. 

Finally, since 4 = 2B we use the B column of the Link 

Table to transform the ‘2’ column of the group table into 

the ‘4’ column. For example, 3.4 = 3(2B) = (3.2)B = 4B 

(from the ‘2’ column of the group table) = 3 (from the B 

column of the link table). 

 1 2 3 4 

1 1 2 3 4 

2 2    

3 3    

4 4    

 1 2 3 4 

1 1 2 3 4 

2 2 1 4  

3 3 4 1  

4 4 3 2  
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The entries in the ‘2’ column are 2, 1, 4, 3 

respectively and from the link table 2B = 4, 1B = 3, 4B 

= 2 and 3B = 1. So the ‘4’ column of the group table is 

4, 3, 2, 1 respectively. 

 

 

 

 

 

 

Example 14: G = A, B | A3, B2, BAB = A−1 

We write the third relator as BABA. We show the state of 

the computation at each generation and, to save space, we 

omit any rows that contain ‘dead’ chains from the 

previous step. 

 

N = 1, 2 

1AAA1→2AA1   A B  

1BB1→  1 (2)  1 

1BABA1  2   A 

2AAA2→2AA1 =     

2BB2      

2BABA2→2BAB1      

 

The symbol ‘=’ indicates that the chain is a repetition of 

an earlier one. There is no need to process this further and 

we can effectively regard it as ‘dead’. 

  

 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 1 2 

4 4 3 2 1 
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N = 3 

1AAA1→2AA1   A B  

1BB1→3B1  1 (2) (3) 1 

1BABA1→3ABA1  2   A 

2BB2  3  1 B 

2BABA2→2BAB1→2BA3      

3AAA3      

3BB3→1B3      

3BABA3→1ABA3→2BA3 =     
 

N = 4 

1AAA1→2AA1→4A1   A B  

1BABA1→3ABA1  1 (2) (3) 1 

2BB2  2 (4)  A 

2BABA2→2BAB1→2BA3  3  1 B 

3AAA3  4 1  2A 

4AAA4→1AA4→2A4      

4BB4      

4BABA4→4BAB2      
 

N = 5 

1BABA1→3ABA1   A B  

2BB2→5B2  1 (2) (3) 1 

2BABA2→2BAB1→2BA3→5A3  2 (4) (5) A 

3AAA3→3AA5  3  1 B 

4BB4  4 1  2A 

4BABA4→4BAB2→4BA5  5 3 2 2B 

5AAA5→3AA5      
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5BB5→2B5      

5BABA5→2ABA5→4BA5      

 

N = 6 

1BABA1→3ABA1→6BA1→4A1  

3AAA3→3AA5→6A5  

4BB4→5B4  

4BABA4→4BAB2→4BA5→4B6  

5AAA5→3AA5→6A5  

5BABA5→2ABA5→4BA5→6A5  

6AAA6→5AA6→3A6  

6BB6→4B6  

6BABA6→4ABA6→1BA6→3A6  

 

 A B  

1 (2) (3) 1 

2 (4) (5) A 

3 (6) 1 B 

4 1 6 2A 

5 3 2 2B 

6 5 4 3A 

 

The first column of the group table is easy, and since 

2 = A and 3 = B the next two columns can be copied from 

the link table. 

 

Now 4 = 2A so we take the ‘2’ column and multiply each 

entry by A, using the Link Table. So 2, 4, 6, 1, 3, 5 



 241 

becomes 4, 1, 5, 2, 6, 3. The A column is a permutation 

of {1, 2, 3, 4, 5, 6} and we are simply using A to permute 

the ‘2’ column 

 

GROUP TABLE 

 1 2 3 4 5 6 

1 1 2 3 4   

2 2 4 5 1   

3 3 6 1 5   

4 4 1 6 2   

5 5 3 2 6   

6 6 5 4 3   

 

Since 5 = 2B we permute the ‘2’ column of the group table 

by the B column of the Link Table, considered as a 

permutation. This gives us the ‘5’ column. Similarly 6 = 

3A so we permute the ‘3’ column by A. 

 

GROUP TABLE 

 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 5 1 6 3 

3 3 6 1 5 4 2 

4 4 1 6 2 3 5 

5 5 3 2 6 1 4 

6 6 5 4 3 2 1 

 

We can always complete the last column by writing down 

the missing symbol in each row. 
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Example 15: G = A, B | A4, B4, A2 = B2, B−1AB = A−1. 

We write the third relator as AAbb, and the fourth as 

bABA. This time we present the finished computation, 

though to help you follow it we enclose in parentheses 

those links in the link table that came about by creation, 

rather than the contraction of a chain. Also, since our 

relators involve the inverse ‘b’ we include a column in the 

link table for it. Remember that every link that goes in the 

B column will produce an equivalent one in the b column. 

 

CHAIN TABLE  

1AAAA1→2AAA1→4AA1→7A1  

1BBBB1→3BBB1→4BB1→8B1  

1AAbb1→2Abb1→2Ab3→4b3  

1bABA1→1bAB7→1bA5→8A5  

2AAAA2→2AAA1 = 

2BBBB2→5BBB2→5BB6→7B6  

2AAbb2→4Abb2→4Ab5→7b5  

2bABA2→2bAB1→6AB1→6A8  

3AAAA3→3AAA5→6AA5→8A5  

3BBBB3→3BBB1 = 

3AAbb3→3AAb4→6Ab4→8b4  

3bABA3→1ABA3→2BA3→5A3  

4AAAA4→4AAA2→4AA1 = 

4BBBB4→4BBB3→4BB1 = 

4AAbb4→7Abb4→1bb4→8b4  

4bABA4→3ABA4→3AB2→6B2  
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5AAAA5→3AAA5 = 

5BBBB5→5BBB2 = 

5AAbb5→3Abb5→6bb5→6b7  

5bABA5→2ABA5→4BA5→8A5  

6AAAA6→6AAA3→6AA5 = 

6BBBB6→2BBB6→5BB6→7B6  

6AAbb6→6AAb2→6AA5 = 

6bABA6→6bAB3→6bA1→7A1  

7AAAA7→1AAA7→2AA7→4A7  

7BBBB7→6BBB7→2BB7→5B7  

7AAbb7→1Abb7→2bb7→6b7  

7bABA7→5ABA7→3BA7→4A7  

8AAAA8→5AAA8→3AA8→6A8  

8BBBB8→1BBB8→3BB8→4B8  

8AAbb8→5Abb8→3bb8→1b8  

8bABA8→4ABA8→7BA8→6A8  

 

        LINK TABLE 

 A B b  

1 (2) (3) 8 1 

2 (4) (5) 6 A 

3 (6) 4 1 B 

4 (7) (8) 3 2A 

5 3 7 2 2B 

6 8 2 7 3A 

7 1 6 5 4A 

8 5 1 4 4B 
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We can obtain the group table from the link table 

in the usual way. This group is the quaternion group of 

order 8. 

 

 

 

 

 

 

 

 

 

 

 

Example 16: G = A, B | A3, B3, (AB)2 
 

CHAIN TABLE  

1AAA1→2AA1→4A1  

1BBB1→3BB1→7B1  

1ABAB1→2BAB1→5AB1→5A7  

2AAA2→2AA1 = 

2BBB2→5BB2→9B2  

2ABAB2→4BAB2→8AB2→8A9  

3AAA3→6AA3→10A3  

3BBB3→3BB1 = 

4AAA4→1AA4→2A4  

4BBB4→4BB6→8B6  

4ABAB4→1BAB4→3AB4 = 

GROUP TABLE 

 1 2 3 4 5 6 7 8 

1 1 2 3 4 5 6 7 8 

2 2 4 5 7 8 3 1 6 

3 3 6 4 8 2 7 5 1 

4 4 7 8 1 6 5 2 3 

5 5 3 7 6 4 1 8 2 

6 6 8 2 5 1 4 3 7 

7 7 1 6 2 3 8 4 5 

8 8 5 1 3 7 2 6 4 
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5AAA5→7AA5→11A5  

5BBB5→5BB2 = 

5ABAB5→5ABA2→5AB1 = 

6AAA6→6AA3 = 

6BBB6→4BB6 = 

6ABAB6→6ABA8→10BA8→12A8  

7AAA7→7AA5 = 

7BBB7→1BB7→3B7  

7ABAB7→7ABA3→7AB10→11B10  

8AAA8→9AA8→12A8  

8BBB8→6BB8→4B8  

8ABAB8→8ABA4→8AB2→9B2  

9AAA9→9AA8 = 

9BBB9→2BB9→5B9  

9ABAB9→9ABA5→9AB11→12B11  

10AAA10→3AA10→6A10  

10BBB10→10BB11→10B12  

10ABAB10→3BAB10→7AB10 = 

11AAA11→5AA11→7A11  

11BBB11→10BB11 = 

11ABAB11→5BAB11→9AB11 = 

12AAA12→8AA12→9A12 = 

12BBB12→11BB12→10B12 = 

12ABAB12→8BAB12→6AB12→10B12 = 
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GROUP TABLE 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 3 4 5 6 7 8 9 10 11 12 

2 2 4 5 1 8 7 9 3 6 11 12 10 

3 3 6 7 10 4 11 1 12 8 5 2 9 

4 4 1 8 2 3 9 6 5 7 12 10 11 

5 5 7 9 11 1 12 2 10 3 8 4 6 

6 6 10 4 3 12 1 8 7 11 2 9 5 

7 7 11 1 5 10 2 3 9 12 4 6 8 

8 8 9 6 12 2 10 4 11 5 3 1 7 

9 9 12 2 8 11 4 5 6 10 1 7 3 

10 10 3 12 6 7 8 11 4 1 9 5 2 

11 11 5 10 7 9 3 12 1 2 6 8 4 

12 12 8 11 9 6 5 10 2 4 7 3 1 

 

This group is A4. 

 

    LINK TABLE 

 A B  

1 (2) (3) 1 

2 (4) (5) A 

3 (6) (7) B 

4 1 (8) 2A 

5 7 (9) 2B 

6 (10) 4 3A 

7 (11) 1 3B 

8 9 6 4B 

9 (12) 2 5B 

10 3 12 6A 

11 5 10 7A 

12 8 11 9A 

    LINK TABLE 

 A B  

1 (2) (3) 1 

2 (4) (5) A 

3 (6) (7) B 

4 1 (8) 2A 

5 7 (9) 2B 

6 (10) 4 3A 

7 (11) 1 3B 

8 9 6 4B 

9 (12) 2 5B 

10 3 12 6A 

11 5 10 7A 

12 8 11 9A 

    LINK TABLE 

 A B  

1 (2) (3) 1 

2 (4) (5) A 

3 (6) (7) B 

4 1 (8) 2A 

5 7 (9) 2B 

6 (10) 4 3A 

7 (11) 1 3B 

8 9 6 4B 

9 (12) 2 5B 

10 3 12 6A 

11 5 10 7A 

12 8 11 9A 
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§ 5.5. Why Does It Work? 
 At this stage it’s difficult to give a rigorous proof 

that the Todd-Coxeter algorithm, when it terminates 

normally, gives the correct result because we have not yet 

properly defined what a group presentation really is. But 

here is an informal proof which will suffice for now. 

 Suppose we carry out the Todd-Coxeter algorithm 

on a presentation for a group G and it terminates 

normally. We end up with a finite number of codes, N,  

and a link table which expresses each of the generators as 

a permutation on {1, 2, ... , N}. These permutations 

generate a permutation group which will satisfy all the 

relations given in the presentation. Provided that different 

codes correspond to different elements this permutation 

group will be isomorphic to the group presented by the 

presentation. 

 Now identifications can occur during the course of 

the algorithm, forced by contradictions that arise from 

interactions between the relations. But if at the end we 

have two different codes for the same group element we 

would have an unforced identification, that is, one that is 

not a consequence of the relations. 

 But the group described by the presentation is one 

in which the only relations that hold are those that are 

consequences of the ones given in the presentation. An 

unforced identification would correspond to a relation 

that is not a consequence of these. It therefore could not 

arise. Hence the permutation group obtained at the end is 

indeed isomorphic to the group being presented. 
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§ 5.6. Compact Todd-Coxeter 
 There is a lot of rewriting involved as the chains are 

born, contract and die. The following is a more compact 

way of setting out the working. Consider the following 

reworking of Example 13. 

 

Example 13 (compact):  G = A, B | A2, B2, (AB)2. 

The Chain Table begins as follows. 

 

       A       A      B      B       A        B       A      B 

1  1  1    1 

 

Since we don’t know how big the group is we don’t know 

how many rows there will be. But the number of columns 

will remain the same. It is determined by the presentation. 

 

The Link Table begins as follows. 

 A B 

1   

 

Again the number of columns is fixed but we don’t know 

until we are finished how many rows there will be. 

 

The next available code is 2 and we decide to assign it to 

1A. So we write (2) in the 1A position of the Link Table. 

This represents the link 1A2.The reason for the 

parentheses is to record the fact that this was a choice. So 

the Link Table now becomes as follows. 
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Going back to the Chain Table we write 2 where there is 

a ‘1’ in a  column and an A above. This corresponds to 

the use of the link 1A2, where 1A = 2. 

 

       A       A      B      B       A        B       A      B 

1 2 1  1 2   1 

 

At the same time we create a second row. 

 

       A       A      B      B       A        B       A      B 

1 2 1  1 2   1 

2  2  2    2 

 

We now have the link 2A1 in the top row. We 

transfer this to the Link Table, which becomes: 

 

 

 

 

This time we don’t enclose the ‘1’ in parentheses because 

we didn’t choose that link. It was a consequence of the 

previous choice. 

 

 Now we can use that link to further process the 

Chain Table. 

 

 A B 

1 (2)  

 A B 

1 (2)  

2 1  
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       A       A      B      B       A        B       A      B 

1 2 1  1 2   1 

2 1 2  2 1   2 

 

 No further contractions are possible so we 

introduce a 3rd row. 

 

       A       A      B      B       A        B       A      B 

1 2 1  1 2   1 

2 1 2  2 1   2 

3  3  3    3 

 

Let’s choose 1B3. This is entered into the Link Table. 

 

  

 

 

 

 

 We can use this new link 1B3 to process the Chain 

Table further. 

 

       A       A      B      B       A        B       A      B 

1 2 1 3 1 2   1 

2 1 2  2 1 3  2 

3  3  3    3 

 

 This now gives a new link 3B1. The Link Table 

becomes: 

 A B 

1 (2) (3) 

2 1  

3   
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 Back to the Chain Table. 

 

       A       A      B      B       A        B       A      B 

1 2 1 3 1 2  3 1 

2 1 2  2 1 3  2 

3  3 1 3  2 1 3 

 

 We were able to put the 3B1 at the end of the top 

row and the 2A1 in the bottom row, but that’s as far as we 

can go at this stage as we don’t know 2B?   ?A3   3A?   

or ?B2. Looks like we’ll have to create a ‘4’ 

 A B 

1 (2) (3) 

2 1 (4) 

3  1 

4   

 

       A       A      B      B       A        B       A      B 

1 2 1 3 1 2 4 3 1 

2 1 2 4 2 1 3 4 2 

3 4 3 1 3 4 2 1 3 

4 3 4 2 4 3 1 2 4 

 

 A B 

1 (2) (3) 

2 1  

3  1 
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 We can now complete the Link Table: 

 A B 

1 (2) (3) 

2 1 (4) 

3 4 1 

4 3 2 

The Group Table can be obtained as before. 

 

Example 15 (compact): 

G = A, B | A4, B4, A2 = B2, B−1AB = A−1. 

 Rather than writing out the Chain Table and Link 

table at each stage I’ll just write out the final tables when 

the algorithm terminates. 

    A  A  A  A   B  B  B   B  A  A   b  b   b   A   B  A 

1 2 4 7 1 3 4 8 1 2 4 3 1 8 5 7 1 

2 4 7 1 2 5 7 6 2 4 7 5 2 6 8 1 2 

3 6 8 5 3 4 8 1 3 6 8 4 3 1 2 5 3 

4 7 1 2 4 8 1 3 4 7 1 8 4 3 6 2 4 

5 3 6 8 5 7 6 2 5 3 6 7 5 2 4 8 5 

6 8 5 3 6 2 5 7 6 8 5 2 6 7 1 3 6 

7 1 2 4 7 6 2 5 7 1 2 6 7 5 3 4 7 

8 5 3 6 8 1 3 4 8 5 3 1 8 4 7 6 8 
 

 

 

 

 

 

 A B b   A B b 

1 (2) (3) 8  5 3 7 2 

2 (4) (5) 6  6 8 2 7 

3 (6) 4 1  7 1 6 6 

4 (7) (8) 3  8 5 1 4 
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§ 5.7.  Marriage Strategies 
  Probably all of the algorithms you have met so far 

in your mathematical career are deterministic. This means 

that the algorithm tells you precisely what to do at each 

stage and terminates after a finite number of steps. It can 

therefore be programmed on a computer so that, after 

feeding in the input data, we simply need to click “GO” 

and wait for the output. 

 By contrast the Todd-Coxeter algorithm is a wild 

beast. It is non-deterministic. Every so often the algorithm 

consults you as an external ‘oracle’. “I can’t proceed”, it 

says, “please choose a marriage partner for the next 

code”. This you do and then it goes off happily for a while 

until it has to come back for some more advice. 

 The following three strategies are useful. 

 

MARRIAGE STRATEGY I 

Fill up the first blank cell in the Link Table. 

 

For example if our Link Table, at a given stage, is: 

 A B 

1 (2) (3) 

2 3  

3   

and we are about to create the code ‘4’ we would, 

following this strategy, create the link 2B4 by writing (4) 

into the table. Our Link Table would now be: 
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 A B 

1 (2) (3) 

2 3 (4) 

3   

 

MARRIAGE STRATEGY II 

Choose a link that shortens one of the shortest 

chains. 

 

 For example if we have the chains 1AAAA3, 

2ABA3, 1AABB2, and we are about to create the code ‘5’ 

we would, using this principle, create the link 2A5, or 

perhaps 5A3. Either way we would now have a chain of 

length 2 (either 5BA3 or 2AB5, depending which of the 

alternatives we chose. Short chains are more likely to give 

links in the near future and links allow us to shorten other 

chains, so this seems a sensible strategy. 

 

MARRIAGE STRATEGY III 

Choose a link that will shorten the most chains. 

 

 For example if we have the chains 1AAAA3, 

2ABA3, 1AABB2 and we are about to create the code ‘5’ 

we would, using this principle, create the link 1A5 to 

shorten the first and third chains, or perhaps 5A3 to 

shorten the first and second. 

 In many cases there will be equally attractive 

alternatives. We can often choose between them by 

considering which best satisfies the other strategies. For 
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example using strategy III above we could have created 

the link 1A5 or 5A3 but since 5A3 also shortens the 

shortest chain that is the one we should probably choose. 

There are many other, less obvious strategies. In fact no 

finite list of strategies will work in all cases. 

 

§ 5.8. Unsolvability of the Word Problem 
 Which of the above marriage strategies is the best? 

If we could decide that then we could then build this into 

the algorithm and so make it deterministic. Unfortunately 

it is not possible! 

 The Todd-Coxeter Algorithm (either the restricted 

or the full version) will, if it terminates normally, give the 

correct group table and the full version, involving 

identifications to resolve contradictions, will only ever 

terminate normally – if it terminates at all. The intrinsic 

problem with the Todd-Coxeter Algorithm is that it may 

never terminate. 

 Of course, if the presentation is that of an infinite 

group then quite clearly it can never terminate. We would 

be forced to keep giving out more and more integer codes. 

 But what if the group is indeed finite? If the 

algorithm doesn’t terminate there is no way of knowing 

this. Even if the algorithm continues for an enormous 

length of time, with integer codes running in to the 

millions, we cannot be sure that it is destined to go on 

forever. We may be just about to conclude that we have 

an infinite group when suddenly all the chains collapse 

and the algorithm terminates. It might just be a very, very 



 256 

large group, but not an infinite one. Or we could get 

contradictions and identifications and it might turn out 

that all the millions of codes represent the same element 

and we have the trivial group! We can never tell what’s 

around the corner. 

On the other hand, even though we have a finite 

group, because of the choices that we make, the algorithm 

may go on indefinitely. Certainly it’s very easy to make 

poor choices that would cause this to happen. 

What if the group really is finite and we make the 

‘right’ choices? Then it is true that the full algorithm will 

terminate, giving the correct group table. But how can we 

know what are the right choices? Is there is a strategy, 

either a combination of the three given above, or perhaps 

some other fiendishly clever one, that would guarantee 

that the full algorithm would always terminate? The 

answer is a resounding ‘NO’. In fact we can’t guarantee 

that, given a presentation, we can always determine 

whether a given word will reduce to the identity! 

It is not simply that 

nobody has yet come up 

with such a deterministic 

algorithm. It has been 

proved that nobody ever 

will! Like the Halting 

Problem in computer 

science, the Word Problem 

is unsolvable. 
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THE WORD PROBLEM 
Construct an algorithm which, given any presentation 

for a group, and any word in those generators, will 

determine whether or not that word represents the 

identity. 

 

Theorem 1: The Word Problem is Unsolvable (i.e. no 

such algorithm can ever exist). 

‘Proof’: This has been proved but, as the proof is rather 

long and technical, I omit it. Basically one assumes that 

such an algorithm exists and then proceeds to obtain a 

logical contradiction. 

 

What it means is that the Todd-Coxeter algorithm 

attempts to do something that is intrinsically impossible. 

Yet it works surprisingly well, for ‘reasonable’ 

presentations, using ‘sensible’ choice strategies (like the 

three given above). Needless to say, much research has 

gone into investigating the effect of different choice 

strategies for different types of presentation. 

 Can we avoid identifications by making the ‘right’ 

choices? This is easily answered. We cannot. For example 

the presentation A|A5, A7 represents the trivial group 

{1}. This is because A = A15−14 = (A5)3(A−7)2 = 1. Yet we 

have to begin by introducing the integer code ‘2’, which 

ultimately must be identified with ‘1’. 

 In many other cases, however, when a 

contradiction arises, it is possible to avoid identifications 

by starting again and making better choices. 
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Example 17: G = A, B | A7, A2B2. 

If we adopted strategy I at each step we would find that 

we get a contradiction after having introduced code 21. If 

you want to recreate this computation the created links 

would be: 

1A2, 1B3, 2A4, 2B5, 3A6, 3B7, 4A8, 4B9, 5A10, 5B11, 

6B12, 7B13, 8A14, 8B15, 9A16, 10B17, 11B18, 12A19, 

12B20, 14B21. 

 

If we adopted strategy II at each stage we’d find that we 

would get a contradiction after having introduced code 

20. The created links would be: 

1A2, 2A3, 3B4, 3A5, 5B6, 4A7, 7A8, 5A9, 6A10, 10A11, 

8A12, 9A13, 12A14, 12B15, 13A16, 1B17, 2B18, 

11A19, 14A20. 

 

If we adopted strategy III at each stage we would find that 

we would get a contradiction after having introduced code 

17. The created links would be: 

1A2, 2A3, 3A4, 4A5, 5A6, 6A7, 1B8, 1b9, 3b10, 5b11, 

7b12, 2b13, 4b14, 9a15, 10a16, 10A17. 

 

But the following combination of all three basic strategies 

terminates without recourse to identifications.  

 

We begin by using strategy III at each stage. 

1AAAAAAA1→2AAAAAA1→3AAAAA1 

→4AAAA1→5AAA1→6AA1→7A1 

 

1AABB1→2ABB1→3BB1  
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2AAAAAAA2→3AAAAAA2→3AAAAA1 = 

2AABB2→3ABB2→4BB2  

3AAAAAAA3→3AAAAAA2→3AAAAA1 = 

3AABB3→4ABB3→5BB3  

4AAAAAAA4→4AAAAAA3→4AAAAA2 

→4AAAA1 

= 

4AABB4→5ABB4→6BB4  

5AAAAAAA5→5AAAAAA4→5AAAAA3 

→5AAAA2→5AAA1 

= 

5AABB5→6ABB5→7BB5  

6AAAAAAA6→6AAAAAA5→6AAAAA4 

→6AAAA3→6AAA2→6AA1 

= 

6AABB6→7ABB6→1BB6  

7AAAAAAA7→1AAAAAA7→2AAAAA7 

→3AAAA7→4AAA7→5AA7→6A7 

= 

7AABB7→1ABB7→2BB7  

 A B  

1 (2)  1 

2 (3)  1A 

3 (4)  2A 

4 (5)  3A 

5 (6)  4A 

6 (7)  5A 

7 1  6A 

 We have lots of lovely short chains of the form 

xBBy but without a B link we’ll have no chance of 

making links from them. For this reason we now switch 
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to strategy I and fill up the first blank in the B column by 

creating the link 1B8. 

 

3BB1  

4BB2  

5BB3  

6BB4  

7BB5  

1BB6→8B6  

2BB7  

8AAAAAAA8  

8AABB8  

 

 A B  

1 (2) (8) 1 

2 (3)  1A 

3 (4)  2A 

4 (5)  3A 

5 (6)  4A 

6 (7)  5A 

7 1  6A 

8  6 1B 

 

 It would be very natural now to concentrate on Bs 

but it turns out that this is not a good idea. Instead we go 

back to strategy III. It might seem a bad idea to be again 

filling up the A column and neglecting the B column, but 

watch! 
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3BB1  

4BB2  

5BB3  

6BB4  

7BB5  

2BB7  

8AAAAAAA8→9AAAAAA8→10AAAAA8 

→11AAAA8→12AAA8→13AA8 

 

8AABB8→8AAB1→9AB1→10B1  

9AAAAAAA9→9AAAAAA8→10AAAAA8 = 

9AABB9→10ABB9→11BB9  

10AAAAAAA10→10AAAAAA9→10AAAAA8 = 

10AABB10→11ABB10→12BB10  

11AAAAAAA11→11AAAAAA10→11AAAAA9 

→11AAAA8 

= 

11AABB11→12ABB11→13BB11  

12AAAAAAA12→12AAAAAA11→12AAAAA10 

→12AAAA9→12AAA8 

= 

12AABB12→13ABB12  

13AAAAAAA13→13AAAAAA12→13AAAAA11 

→13AAAA10→13AAA9→13AA8 

= 

13AABB13  
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 A B  

1 (2) (8) 1 

2 (3)  1A 

3 (4)  2A 

4 (5)  3A 

5 (6)  4A 

6 (7)  5A 

7 1  6A 

8 (9) 6 1B 

9 (10)  8A 

10 (11)  9A 

11 (12)  10A 

12 (13)  11A 

13   12A 

 

 It looks as though we are still a long way off getting 

rid of all of our chains. But suddenly everything collapses 

at the very next step! 

 

3BB1→10B1  

4BB2→11B2  

5BB3→12B3  

6BB4→13B4  

7BB5→14B5  

2BB7→9B7  

13AA8→14A8  

11BB9→2B9  

12BB10→3B10  
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13BB11→4B11  

13ABB12→14BB12→5B12  

13AABB13→14ABB13→8BB13→6B13  

14AAAAAAA14→8AAAAAA14→9AAAAA14 

→10AAAA14→11AAA14→12AA14→13A14 

= 

14AABB14→8ABB14→9BB14→7B14  
 

 A B  

1 (2) (8) 1 

2 (3) 9 1A 

3 (4) 10 2A 

4 (5) 11 3A 

5 (6) 12 4A 

6 (7) 13 5A 

7 1 14 6A 

8 (9) 6 1B 

9 (10) 7 8A 

10 (11) 1 9A 

11 (12) 2 10A 

12 (13) 3 11A 

13 (14) 4 12A 

14 8 5 13A 

 

 I’ll now rework this using the compact notation. 

But I’ll use the same marriage choices. 
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      A    A    A    A    A     A    A    A    A    B     B 

 

 A B   A B 

1 (2) (8)  8 (9) 6 

2 (3) 9  9 (10) 7 

3 (4) 10  10 (11) 1 

4 (5) 11  11 (12) 2 

5 (6) 12  12 (13) 3 

6 (7) 13  13 (14) 4 

7 1 14  14 8 5 

 

How did we know that this combination of 

strategies was going to work? Perhaps intuition. But of 

course nothing beats good old group theory. In many 

1 2 3 4 5 6 7 1 2 3 10 1 

2 3 4 5 6 7 1 2 3 4 11 2 

3 4 5 6 7 1 2 3 4 5 12 3 

4 5 6 7 1 2 3 4 5 6 13 4 

5 6 7 1 2 3 4 5 6 7 14 5 

6 7 1 2 3 4 5 6 7 1 8 6 

7 1 2 3 4 5 6 7 1 2 9 7 

8 9 10 11 12 13 14 8 9 10 1 8 

9 10 11 12 13 14 8 9 10 11 2 9 

10 11 12 13 14 8 9 10 11 12 3 10 

11 12 13 14 8 9 10 11 12 13 4 115 

12 13 14 8 9 10 11 12 13 14 5 12 

13 14 8 9 10 11 12 13 14 8 6 13 

14 8 9 10 11 12 13 14 8 9 9 14 
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cases we can manipulate the presentation and get our 

answer much more quickly. 

In this case we have A = A8−7 = A8= (A2)4 = (B−2)4 = B−8 

so G = B | B−56, B−14 

        = B | B14, the cyclic group of order 14. 

 

§ 5.9. Direct Products 
 The direct product 

of two groups G, H is the 

set of ordered pairs where 

the first component comes 

from G and the second from H, that is, 

{(g, h) | g  G, h  H}. 

It is denoted by G  H. 

Multiplication in G  H is component-wise, that is 

(g1, h1).(g2, h2) = (g1g2, h1h2). 

The identity is (1, 1) and (g, h)=1 = (g−1, h−1). 

 Strictly speaking the operation  is not 

commutative in that H  G is usually different to G  H. 

However they are isomorphic, by matching (g, h) in G  

H with (h, g) in H  G. 

 If the groups are written additively we call it the 

direct sum and write it as G  H. Multiplication is 

defined by (g1, h1) + (g2, h2) = (g1 + g2, h1 + h2). The 

identity is (0, 0) and the inverse of (g, h) is (−g, −h). 

 

 If G, H are finite then the order of G  H (or G  

H if the groups are written additively) is |G|.|H|. 
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 Within G  H there is a subgroup {(g, 1) | g  G} 

that is isomorphic to G and another subgroup 

{(1, h) | h  H} 

that is isomorphic to H. Moreover any element of the first 

subgroup commutes with any element of the second since 

(g, 1)(1, h) = (g, h) = (1, h)(g, 1). 

 

Example 18: 

Let G = S4, the symmetric group on {1, 2, 3, 4} and 

H = Z7
#, the set {1, 2, 3, 4, 5, 6} under multiplication 

modulo 7. Then |G  H| = 24  6 = 144. 

An example of multiplication is: 

((12)(34), 5).((123), 4) = ((12)(34).(123), 5.4) 

                                     = ((134), 6) and 

((1234), 2)−1 = ((1234)−1, 2−1) ((1432), 4). 

 

Example 19: Let G = ℤ, the group of integers under 

addition and let H = R[x], the set of real polynomials 

under addition. Then G  H is infinite and 

(5, x + 1).(3, x − 1) = (15, x2 − 1). 

 

Example 20: Let G = A, B | A4, B2, ABAB and 

H = A | A5. Then G  H is isomorphic to 

A, B, C | A4, B2, C5, ABAB,  AC = CA, BC = CB. 

 

 If we have a presentation in which the generators 

can be split into two subsets such that those in one subset 

commute with those in the other, and if there are no other 
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relations that involve generators from both sets, we can 

split the group as a direct product. 

 

Example 21: G = A, B | A4, B2, AB = BA. 

In this presentation the relation AB = BA states that A 

commutes with B. Apart from this there’s no relation 

involving both A and B. So the group splits into a direct 

product: 

G  H  K where H = A | A4 and K = B | B2 . We don’t 

need to use the Todd-Coxeter algorithm to obtain group 

tables for these cyclic groups. The group table for H is  

 1 2 3 4 

1 1 2 3 4 

2 2 3 4 1 

3 3 4 1 2 

4 4 1 2 3 

 

and for K it is 

 1 2 

1 1 2 

2 2 1 

The elements of G = H  K are 

(1, 1), (2, 1), (3, 1), (4, 1), (1, 2), (2, 2), (3, 2), (4, 2). 

Let’s code these as follows. 

1 = (1, 1) 5 = (1, 2) 

2 = (2, 1) 6 = (2, 2)  

3 = (3, 1) 7 = (3, 2) 

4 = (4, 1) 8 = (4, 2) 
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 You need to keep track of which groups these come 

from. So in the coding 7 = (3, 2), you need to remember 

that 7  H  K, 3  H and 2  K and in the coding 1 = (1, 

1) the three 1’s all represent different identity elements. 

The first is the identity of H  K, the second is the identity 

of H and the third is the identity of K. 

In calculating the group table for G we proceed as 

in the following examples: 

2  7 = (2, 1)(3, 2) = (2  3, 1  2) = (4, 2) = 8 

7  8 = (3, 2)(4, 2) = (3  4, 2  2) = (2, 1) = 2 

 

So the group table for G is  

 1 2 3 4 5 6 7 8 

1 1 2 3 3 5 6 7 8 

2 2 3 4 1 6 7 8 5 

3 3 4 1 2 7 8 5 6 

4 4 1 2 3 8 5 6 7 

5 5 6 7 8 1 2 3 4 

6 6 7 8 5 2 3 4 1 

7 7 8 5 6 3 4 1 2 

8 8 5 6 7 4 1 2 3 

 

Notice that the top 4  4 portion of the group table 

for G is simply the group table for H. This is a 

consequence of the very orderly way in which we ordered 

the pairs. 

 
X Y 

Y X 
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Notice that the next 44 block on the right can be 

obtained by simply adding 4 to each entry in the first 

block. In fact the entire table is built out of just two 44 

blocks, X and Y where X is the group table for H and Y 

is obtained from X by adding 4 to each entry. 

Note too that the pattern of these blocks is that of 

the group table for K. Noticing these patterns we can 

make very short work of completing the group table for 

G. (It’s made even easier if we do the whole job in a word 

processor where we can cut and paste!) Patterns like this 

always occur whenever we have a direct product. 

 

Example 22: 

G = A, B, C | A4, B3, C2, AB = BA, ACAC, BC = CB. 

Here there are two relations that say that B commutes with 

A and with C. Apart from these there’s no relation 

connecting B with either A or C. So the group splits into 

a direct product: 

G = H  K where H = A, C | A4, C2, ACAC and 

K = B | B3. 

We don’t need to use Todd-Coxeter on the second factor. 

The group table for B | B3 is: 

   1 2 3 

1 1 2 3 

2 2 3 1 

3 3 1 2 
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Applying the Todd-Coxeter algorithm to 

H = A, C | A4, C2, ACAC: 

  

1AAAA1→2AAA1→4AA1→6A1  

1CC1→3C1  

1ACAC1→2CAC1→2CA3→5A3  

2AAAA2→2AAA1 = 

2CC2→5C2  

2ACAC2→4CAC2→4CA5→7A5  

3AAAA3→3AAA5→3AA7→8A7  

3CC3→3C1 = 

3ACAC3→3ACA1→3AC6→8C6  

4AAAA4→4AAA2→4AA1 = 

4CC4→7C4  

4ACAC4→6CAC4→6CA7→6C8  

5AAAA5→3AAA5 = 

5CC5→2C5 = 

5ACAC5→3CAC5→1AC5→2C5 = 

6AAAA6→1AAA6→2AA6→4A6 = 

6CC6→8C6 = 

6ACAC6→1CAC6→3AC6 = 

7AAAA7→5AAA7→3AA7→8A7 = 

7CC7→4C7 = 

7ACAC7→5CAC7→2AC7→4C7 = 

8AAAA8→7AAA8→5AA8→3A8 = 

8CC8→6C8 = 

8ACAC8→7CAC8→4AC8→6C8 = 
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 A C  

1 (2) (3) 1 

2 (4) (5) A 

3 (8) 1 C 

4 (6) (7) 2A 

5 3 2 2C 

6 1 8 4A 

7 5 4 4C 

8 7 6 3A 

 

Notice that we departed from the default choice 

strategy a little in that we didn’t define 6 as 3A. We 

defined 6 as 4A because we had a short chain that could 

be contracted to a link by defining it in this way. The 

group table for H is: 

 

 1 2 3 4 5 6 7 8 

 1 A C 2A 2C 4A 4C 3A 

1 1 2 3 4 5 6 7 8 

2 2 4 5 6 7 1 8 3 

3 3 8 1 7 6 5 4 2 

4 4 6 7 1 8 2 3 5 

5 5 3 2 8 1 7 6 4 

6 6 1 8 2 3 4 5 7 

7 7 5 4 3 2 8 1 6 

8 8 7 6 5 4 3 7 1 
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The elements of G = H  K are 

(1, 1), (2, 1), ... , (8, 1), 

(1, 2), (2, 2), ... , (2, 8), 

(3, 1), (3, 2), ... , (3, 8). 

 

Let’s code these as follows: 

 

1 = (1, 1)   9 = (1, 2) 17 = (1, 3) 

2 = (2, 1) 10 = (2, 2)  18 = (2, 3) 

3 = (3, 1) 11 = (3, 2) 19 = (3, 3) 

4 = (4, 1) 12 = (4, 2) 20 = (4, 3) 

5 = (5, 1) 13 = (5, 2) 21 = (5, 3) 

6 = (6, 1) 14 = (6, 2) 22 = (6, 3) 

7 = (7, 1) 15 = (7, 2) 23 = (7, 3) 

8 = (8, 1) 16 = (8, 2) 24 = (8, 3) 

 

When we calculate the group table for G we find 

that it can be built up as a 24  24 table from three 8  8 

blocks: 

 

 

 

 

The block X is the group table for H, the block Y 

is obtained from this by adding 8 to each of the entries in 

X, and Z is obtained from X by adding 16 to each entry. 

The pattern for these blocks follows that for the group 

table for K. 

 

X Y Z 

Y Z X 

Z X Y 
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EXERCISES FOR CHAPTER 5 
 

 

EXERCISE 1: Find the group table of the groups (A), 

(B) and (C). Use the Restricted Todd-Coxeter using the 

Compact Notation. 

 

(A): A, B|A2, B3, (BA)3. 

      

(B): A, B|A5, A3B2. 

      

(C): A, B, C | A2, B2, C3, CBCB, AB = BA, AC = CA. 

 

EXERCISE 2: Find the group table of: 

A, B|A4, B2, BABA2. 
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SOLUTIONS FOR CHAPTER 5 
 

EXERCISE 1: 

(A): A, B|A2, B3, (BA)3. 

        A    A    B     B     B     B     A     B    A     B     A 

1 2 1 3 6 1 3 5 9 8 2 1 

2 1 2 4 8 2 4 7 10 6 1 2 

3 5 3 6 1 3 6 10 12 11 5 3 

4 7 4 8 2 4 8 9 11 12 7 4 

5 3 5 9 11 5 9 8 2 1 3 5 

6 10 6 1 3 6 1 2 4 7 10 6 

7 4 7 10 12 7 10 6 1 2 4 7 

8 9 8 2 4 8 2 1 3 5 9 8 

9 8 9 11 5 9 11 12 7 4 8 9 

10 6 10 12 7 10 12 11 5 3 6 10 

11  11 5 9 11 5 3 6 10 12 11 

12 11 12 7 10 12 7 4 8 9 11 12 

 

 A B   A B 

1 (2) (3)  7 4 10 

2 1 (4)  8 9 2 

3 (5) (6)  9 8 (11) 

4 (7) (8)  10 6 (12) 

5 3 (9)  11 12 5 

6 (10) 1  12 11 7 
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The group table is: 

  A B 2B 3A 3B 4A 4B 5B 6A 9B 10B 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 3 4 5 6 7 8 9 10 11 12 

2 2 1 4 3 7 8 5 6 10 9 12 11 

3 3 5 6 9 10 1 8 11 12 2 7 4 

4 4 7 8 10 9 2 6 12 11 1 5 3 

5 5 3 9 6 8 11 10 1 2 12 4 7 

6 6 10 1 12 2 3 11 7 4 5 8 9 

7 7 4 10 8 6 12 9 2 1 11 3 5 

8 8 9 2 11 1 4 12 5 3 7 6 10 

9 9 8 11 2 12 5 1 4 7 3 10 6 

10 10 6 12 1 11 7 2 3 5 4 9 8 

11 11 12 5 7 3 9 4 10 6 8 1 2 

12 12 11 7 5 4 10 3 9 8 6 2 1 

 

(B): A, B|A5, A3B2. 

       A     A    A     A    A     A    A     A     B      B 

1 2 3 4 5 1 2 3 4 9 1 

2 3 4 5 1 2 3 4 5 10 2 

3 4 5 1 2 3 4 5 1 6 3 

4 5 1 2 3 4 5 1 2 7 4 

5 1 2 3 4 5 1 2 3 8 5 

6 7 8 9 10 6 7 8 9 1 6 

7 8 9 10 6 7 8 9 10 2 7 

8 9 10 6 7 8 9 10 6 3 8 

9 10 6 7 8 9 10 6 7 4 9 

10 6 7 8 9 10 6 7 8 5 10 
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 A B 

1 (2) (6) 

2 (3) 7 

3 (4) 8 

4 (5) 9 

5 1 (10) 

6 (7) 3 

7 (8) 4 

8 (9) 5 

9 (10) 1 

10 6 2 

 

The group table is: 

  A 2A 3A 4A B 6A 7A 8A 9A 

 1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4 5 6 7 8 9 10 

2 2 3 4 5 1 7 8 9 10 6 

3 3 4 5 1 2 8 9 10 6 7 

4 4 5 1 2 3 9 10 6 7 8 

5 5 1 2 3 4 10 6 7 8 9 

6 6 7 8 9 10 3 4 5 1 2 

7 7 8 9 10 6 4 5 1 2 3 

8 8 9 10 6 7 5 1 2 3 4 

9 9 10 6 7 8 1 2 3 4 5 

10 10 6 7 8 9 2 3 4 5 1 
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Note that we had to be canny about choosing the marriage 

partners. If your computation went beyond 10 it would 

either eventually reach a contradiction or go on forever. 

Choice of marriage partners is so important! 

 

(C): A, B, C | A2, B2, C3, CBCB, AB = BA, AC = CA. 

 A | A2  B, C | B2, C3, CBCB. 

           B      B      C     C     C      C      B     C     B 

1 2 1 3 6 1 3 5 2 1 

2 1 2 4 5 2 4 6 1 2 

3 5 3 6 1 3 6 4 5 3 

4 6 4 5 2 4 5 3 6 4 

5 3 5 2 4 5 2 1 3 5 

6 4 6 1 3 6 1 2 4 6 

 

 B C 

1 (2) (3) 

2 1 (4) 

3 (5) (6) 

4 6 5 

5 3 2 

6 4 1 
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The group table for this group is: 

  B C 2C 3B 3C 

 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 1 4 3 6 5 

3 3 5 6 2 4 1 

4 4 6 5 1 3 2 

5 5 3 2 6 1 4 

6 6 4 1 5 2 3 

 

 The group table for the cyclic group is: 

 

 

We code the ordered pairs as follows: 

11 12 13 14 15 16 A1 A2 A3 A4 A5 A6 

1 2 3 4 5 6 7 8 9 10 11 12 

 

The group table for the direct product has the form: 

 1-6 7-12 

1-6 T T + 6 

7-12 T + 6 T 

Where T is the group table for the second group and T + 

6 is that same table with 6 added to every entry. In full the 

group table for the entire group is: 

  

 1 A 

1 1 A 

A A 1 
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 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 3 4 5 6 7 8 9 10 11 12 

2 2 1 4 3 6 5 8 7 10 9 12 11 

3 3 5 6 2 4 1 9 11 12 8 10 7 

4 4 6 5 1 3 2 10 12 11 7 9 8 

5 5 3 2 6 1 4 11 9 8 12 7 10 

6 6 4 1 5 2 3 12 10 7 11 8 9 

7 7 8 9 10 11 12 1 2 3 4 5 6 

8 8 7 10 9 12 11 2 1 4 3 6 5 

9 9 11 12 8 10 7 3 5 6 2 4 1 

10 10 12 11 7 9 8 4 6 5 1 3 2 

11 11 9 8 12 7 10 5 3 2 6 1 4 

12 12 10 7 11 8 9 6 4 1 5 2 3 

 

EXERCISE 4: A, B|A4, B2, BABA2. 

 If you were to try the Restricted Todd-Coxeter 

Algorithm, then whatever you chose for marriage partners 

you would get contradictions and you would need to 

abort. I haven’t shown you the full version and, if you had 

used it, making the ‘right’ choices, you would be able to 

work out the group table. At certain stages, when you got 

contradictions you would have to identify two codes as 

representing the same group element. A lot of work. 

 But, using a little group theory, you can easily 

identify this group. 

 

 The relations A4 = 1 and B2 = 1 mean that we can 

write BABAA = 1 as B−1AB = A2. 
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 Then B−1A2B = A4 = 1 and so A2 = B1B−1 = 1. But 

then BAB = 1. Since B = B−1 this becomes B−1AB = 1 

which gives A = 1. 

 

 So the group is simply B | B2, the cyclic group of 

order 2, and you don’t need me to write out its group table. 

 

Sometimes using the Todd-Coxeter Algorithm is 

like using a sledgehammer to crack a nut. This example 

highlights the fact that the Todd-Coxeter Algorithm 

performs badly with an unnecessarily complicated 

presentation. 


